當前,人工智能發(fā)展借助深度學習技術突破得到了全面關注和助力推動,各國政府高度重視、資本熱潮仍在加碼,各界對其成為發(fā)展熱點也達成了共識。本文旨在分析深度學習技術現(xiàn)狀,研判深度學習發(fā)展趨勢,并針對我國的技術水平提出發(fā)展建議。
一、深度學習技術現(xiàn)狀
深度學習是本輪人工智能爆發(fā)的關鍵技術。人工智能技術在計算機視覺和自然語言處理等領域取得的突破性進展,使得人工智能迎來新一輪爆發(fā)式發(fā)展。而深度學習是實現(xiàn)這些突破性進展的關鍵技術。其中,基于深度卷積網(wǎng)絡的圖像分類技術已超過人眼的準確率,基于深度神經(jīng)網(wǎng)絡的語音識別技術已達到95%的準確率,基于深度神經(jīng)網(wǎng)絡的機器翻譯技術已接近人類的平均翻譯水平。準確率的大幅提升使得計算機視覺和自然語言處理進入產(chǎn)業(yè)化階段,帶來新產(chǎn)業(yè)的興起。
深度學習是大數(shù)據(jù)時代的算法利器,成為近幾年的研究熱點。和傳統(tǒng)的機器學習算法相比,深度學習技術有著兩方面的優(yōu)勢。一是深度學習技術可隨著數(shù)據(jù)規(guī)模的增加不斷提升其性能,而傳統(tǒng)機器學習算法難以利用海量數(shù)據(jù)持續(xù)提升其性能。二是深度學習技術可以從數(shù)據(jù)中直接提取特征,削減了對每一個問題設計特征提取器的工作,而傳統(tǒng)機器學習算法需要人工提取特征。因此,深度學習成為大數(shù)據(jù)時代的熱點技術,學術界和產(chǎn)業(yè)界都對深度學習展開了大量的研究和實踐工作。
深度學習各類模型全面賦能基礎應用。卷積神經(jīng)網(wǎng)絡和循環(huán)神經(jīng)網(wǎng)絡是兩類獲得廣泛應用的深度神經(jīng)網(wǎng)絡模型。計算機視覺和自然語言處理是人工智能兩大基礎應用。卷積神經(jīng)網(wǎng)絡廣泛應用于計算機視覺領域,在圖像分類、目標檢測、語義分割等任務上的表現(xiàn)大大超越傳統(tǒng)方法。循環(huán)神經(jīng)網(wǎng)絡適合解決序列信息相關問題,已廣泛應用于自然語言處理領域,如語音識別、機器翻譯、對話系統(tǒng)等。
深度學習技術仍不完美,有待于進一步提升。一是深度神經(jīng)網(wǎng)絡的模型復雜度高,巨量的參數(shù)導致模型尺寸大,難以部署到移動終端設備。二是模型訓練所需的數(shù)據(jù)量大,而訓練數(shù)據(jù)樣本獲取、標注成本高,有些場景樣本難以獲取。三是應用門檻高,算法建模及調參過程復雜繁瑣、算法設計周期長、系統(tǒng)實施維護困難。四是缺乏因果推理能力,圖靈獎得主、貝葉斯網(wǎng)絡之父JudeaPearl指出當前的深度學習不過只是“曲線擬合”。五是存在可解釋性問題,由于內部的參數(shù)共享和復雜的特征抽取與組合,很難解釋模型到底學習到了什么,但出于安全性考慮以及倫理和法律的需要,算法的可解釋性又是十分必要的。因此,深度學習仍需解決以上問題。
二、深度學習發(fā)展趨勢
深度神經(jīng)網(wǎng)絡呈現(xiàn)層數(shù)越來越深,結構越來越復雜的發(fā)展趨勢。為了不斷提升深度神經(jīng)網(wǎng)絡的性能,業(yè)界從網(wǎng)絡深度和網(wǎng)絡結構兩方面持續(xù)進行探索。神經(jīng)網(wǎng)絡的層數(shù)已擴展到上百層甚至上千層,隨著網(wǎng)絡層數(shù)的不斷加深,其學習效果也越來越好,2015年微軟提出的ResNet以152層的網(wǎng)絡深度在圖像分類任務上準確率首次超過人眼。新的網(wǎng)絡設計結構不斷被提出,使得神經(jīng)網(wǎng)絡的結構越來越復雜。如:2014年谷歌提出了Inception網(wǎng)絡結構、2015年微軟提出了殘差網(wǎng)絡結構、2016年黃高等人提出了密集連接網(wǎng)絡結構,這些網(wǎng)絡結構設計不斷提升了深度神經(jīng)網(wǎng)絡的性能。
深度神經(jīng)網(wǎng)絡節(jié)點功能不斷豐富。為了克服目前神經(jīng)網(wǎng)絡存在的局限性,業(yè)界探索并提出了新型神經(jīng)網(wǎng)絡節(jié)點,使得神經(jīng)網(wǎng)絡的功能越來越豐富。2017年,杰弗里?辛頓提出了膠囊網(wǎng)絡的概念,采用膠囊作為網(wǎng)絡節(jié)點,理論上更接近人腦的行為,旨在克服卷積神經(jīng)網(wǎng)絡沒有空間分層和推理能力等局限性。2018年,DeepMind、谷歌大腦、MIT的學者聯(lián)合提出了圖網(wǎng)絡的概念,定義了一類新的模塊,具有關系歸納偏置功能,旨在賦予深度學習因果推理的能力。
深度神經(jīng)網(wǎng)絡工程化應用技術不斷深化。深度神經(jīng)網(wǎng)絡模型大都具有上億的參數(shù)量和數(shù)百兆的占用空間,運算量大,難以部署到智能手機、攝像頭和可穿戴設備等性能和資源受限的終端類設備。為了解決這個問題,業(yè)界采用模型壓縮技術降低模型參數(shù)量和尺寸,減少運算量。目前采用的模型壓縮方法包括對已訓練好的模型做修剪(如剪枝、權值共享和量化等)和設計更精細的模型(如MobileNet等)兩類。深度學習算法建模及調參過程繁瑣,應用門檻高。為了降低深度學習的應用門檻,業(yè)界提出了自動化機器學習(AutoML)技術,可實現(xiàn)深度神經(jīng)網(wǎng)絡的自動化設計,簡化使用流程。
深度學習與多種機器學習技術不斷融合發(fā)展。深度學習與強化學習融合發(fā)展誕生的深度強化學習技術,結合了深度學習的感知能力和強化學習的決策能力,克服了強化學習只適用于狀態(tài)為離散且低維的缺陷,可直接從高維原始數(shù)據(jù)學習控制策略。為了降低深度神經(jīng)網(wǎng)絡模型訓練所需的數(shù)據(jù)量,業(yè)界引入了遷移學習的思想,從而誕生了深度遷移學習技術。遷移學習是指利用數(shù)據(jù)、任務或模型之間的相似性,將在舊領域學習過的模型,應用于新領域的一種學習過程。通過將訓練好的模型遷移到類似場景,實現(xiàn)只需少量的訓練數(shù)據(jù)就可以達到較好的效果。
三、未來發(fā)展建議
加強圖網(wǎng)絡、深度強化學習以及生成式對抗網(wǎng)絡等前沿技術研究。由于我國在深度學習領域缺乏重大原創(chuàng)性研究成果,基礎理論研究貢獻不足,如膠囊網(wǎng)絡、圖網(wǎng)絡等創(chuàng)新性、原創(chuàng)性概念是由美國專家提出,我國研究貢獻不足。在深度強化學習方面,目前最新的研究成果大都是由DeepMind和OpenAI等國外公司的研究人員提出,我國尚沒有突破性研究成果。近幾年的研究熱點生成式對抗網(wǎng)絡(GAN)是由美國的研究人員Goodfellow提出,并且谷歌、facebook、twitter和蘋果等公司紛紛提出了各種改進和應用模型,有力推動了GAN技術的發(fā)展,而我國在這方面取得的研究成果較少。因此,應鼓勵科研院所及企業(yè)加強深度神經(jīng)網(wǎng)絡與因果推理模型結合、生成式對抗網(wǎng)絡以及深度強化學習等前沿技術的研究,提出更多原創(chuàng)性研究成果,增強全球學術研究影響力。
加快自動化機器學習、模型壓縮等深度學習應用技術研究。依托國內的市場優(yōu)勢和企業(yè)的成長優(yōu)勢,針對具有我國特色的個性化應用需求,加快對深度學習應用技術的研究。加強對自動化機器學習、模型壓縮等技術的研究,加快深度學習的工程化落地應用。加強深度學習在計算機視覺領域應用研究,進一步提升目標識別等視覺任務的準確率,以及在實際應用場景中的性能。加強深度學習在自然語言處理領域的應用研究,提出性能更優(yōu)的算法模型,提升機器翻譯、對話系統(tǒng)等應用的性能。
-
神經(jīng)網(wǎng)絡
+關注
關注
42文章
4773瀏覽量
100882 -
人工智能
+關注
關注
1792文章
47400瀏覽量
238905 -
深度學習
+關注
關注
73文章
5507瀏覽量
121266
原文標題:深度學習技術發(fā)展趨勢淺析
文章出處:【微信號:AItists,微信公眾號:人工智能學家】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論