色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

LLC諧振變換器中MOSFET失效模式分析

電源聯盟 ? 來源:未知 ? 作者:胡薇 ? 2018-04-27 15:37 ? 次閱讀

1 摘要

提高功率密度已經成為電源變換器的發展趨勢。為達到 這個目標,需要提高開關頻率,從而降低功率損耗、系 統整體尺寸以及重量。對于當今的開關電源(SMPS)而 言,具有高可靠性也是非常重要的。零電壓開關(ZVS) 或零電流開關(ZCS) 拓撲允許采用高頻開關技術,可以 大限度地降低開關損耗。ZVS拓撲允許工作在高頻開 關下,能夠改善效率,能夠降低應用的尺寸,還能夠降 低功率開關的應力,因此可以改善系統的可靠性。LLC 諧振半橋變換器因其自身具有的多種優勢逐漸成為一種 主流拓撲。這種拓撲得到了廣泛的應用,包括高端服務 器、平板顯示器電源的應用。但是,包含有LLC諧振半 橋的ZVS橋式拓撲,需要一個帶有反向快速恢復體二極 管的MOSFET,才能獲得更高的可靠性。

在功率變換市場中,尤其對于通信/服務器電源應用,不 斷提高功率密度和追求更高效率已經成為具挑戰性的 議題。對于功率密度的提高,普遍方法就是提高開關 頻率,以便降低無源器件的尺寸。零電壓開關(ZVS)拓 撲因具有極低的開關損耗、較低的器件應力而允許采用 高開關頻率以及較小的外形,從而越來越受到青睞 。這些諧振變換器以正弦方式對能量進行處理,開 關器件可實現軟開閉,因此可以大大地降低開關損耗和 噪聲。在這些拓撲中,相移ZVS全橋拓撲在中、高功率 應用中得到了廣泛采用,因為借助功率MOSFET的等效 輸出電容和變壓器的漏感可以使所有的開關工作在ZVS 狀態下,無需額外附加輔助開關。然而,ZVS范圍非常 窄,續流電流消耗很高的循環能量。近來,出現了關于 相移全橋拓撲中功率MOSFET失效問題的討論。這種 失效的主要原因是:在低反向電壓下,MSOFET體二極 管的反向恢復較慢。另一失效原因是:空載或輕載情況 下,出現Cdv/dt直通。在LLC諧振變換器中的一個潛在 失效模式與由于體二極管反向恢復特性較差引起的直通 電流相關。即使功率MOSFET的電壓和電流處于安全工作區域,反向恢復dv/dt和擊穿dv/dt也會在如啟動、 過載和輸出短路的情況下發生。

2 LLC諧振半橋變換器

LLC諧振變換器與傳統諧振變換器相比有如下優勢:

■寬輸出調節范圍,窄開關頻率范圍

■?即使空載情況下,可以保證ZVS

■?利用所有的寄生元件,來獲得ZVS

LLC諧振變換器可以突破傳統諧振變換器的局限。正是 由于這些原因,LLC諧振變換器被廣泛應用在電源供電 市場。LLC諧振半橋變換器拓撲如圖1所示,其典型波 形如圖2所示。圖1中,諧振電路包括電容Cr和兩個與之 串聯的電感Lr和Lm。作為電感之一,電感Lm表示變壓器 的勵磁電感,并且與諧振電感Lr和諧振電容Cr共同形成 一個諧振點。重載情況下,Lm會在反射負載RLOAD的作用 下視為完全短路,輕載情況下依然保持與諧振電感Lr串 聯。因此,諧振頻率由負載情況決定。Lr 和Cr決定諧振 頻率fr1,Cr和兩個電感Lr 、Lm決定第二諧振頻率fr2,隨 著負載的增加,諧振頻率隨之增加。諧振頻率在由變壓 器和諧振電容Cr決定的大值和小值之間變動,如公 式1、2所示。

3LLC諧振變換器的失效模式

啟動失效模式

圖3和圖4給出了啟動時功率MOSFET前五個開關波形。 在變換器啟動開始前,諧振電容和輸出電容剛好完全放電。與正常工作狀況相比,在啟動過程中,這些空電容會使低端開關Q2的體二極管深度導通。因此流經開關 Q2體二極管的反向恢復電流非常高,致使當高端開關 Q1導通時足夠引起直通問題。啟動狀態下,在體二極管 反向恢復時,非常可能發生功率MOSFET的潛在失效。 圖5給出了LLC諧振半橋變換器啟動時的簡化波形。

圖6給出了可能出現潛在器件失效的工作模式。在t0~t1時 段,諧振電感電流Ir變為正。由于MOSFET Q1處于導通 狀態,諧振電感電流流過MOSFET Q1 溝道。當Ir開始上 升時,次級二極管D1導通。因此,式3給出了諧振電感 電流Ir的上升斜率。因為啟動時vc(t)和vo(t)為零,所有的 輸入電壓都施加到諧振電感Lr的兩端。這使得諧振電流劇增。

在t1~ t 2時段,MOSFET Q1門極驅動信號關斷,諧振電感 電流開始流經MOSFET Q2的體二極管,為MOSFET Q2產生 ZVS條件。這種模式下應該給MOSFET Q2施門極信號。由 于諧振電流的劇增,MOSFET Q2體二極管中的電流比正 常工作狀況下大很多。導致了MOSFET Q2的P-N結上存儲 更多電荷。

在t2~t3時段,MOSFET Q2施加門極信號,在t0~t1時段 劇增的諧振電流流經MOSFET Q2溝道。由于二極管D1 依然導通,該時段內諧振電感的電壓為:該電壓使得諧振電流ir(t)下降。然而,很小,并不足以在這個時間段?內使電流反向。在t3時刻,MOSFET Q2電流依然從源 極流向漏極。另外,MOSFET Q2的體二極管不會恢復,因為漏源極之間沒有反向電壓。下式給出了諧振 電感電流Ir的上升斜率:

在t3~t4時段,諧振電感電流經MOSFET Q2體二極管續 流。盡管電流不大,但依然給MOSFET Q2的P-N結增加 儲存電荷。

在t4~t5時段,MOSFET Q1通道導通,流過非常大的直 通電流,該電流由MOSFET Q2體二極管的反向恢復電 流引起。這不是偶然的直通,因為高、低端MOSFET正 常施加了門極信號;如同直通電流一樣,它會影響到該 開關電源。這會產生很大的反向恢復dv/dt,有時會擊穿 MOSFET Q2。這樣就會導致MOSFET失效,并且當采 用的MOSFET體二極管的反向恢復特性較差時,這種失 效機理將會更加嚴重。

過載失效模式

圖7給出了不同負載下LLC諧振變換器的直流增益特性 曲線。根據不同的工作頻率和負載可以分為三個區域。 諧振頻率fr1的右側(藍框)表示ZVS區域,空載時小 第二諧振頻率fr2的左側(紅框)表示ZCS區域,fr1和fr2 之間的可能是ZVS或者ZCS,由負載狀況決定。所以紫 色的區域表示感性負載,粉色的區域表示容性負載。圖 8給出了感性和容性負載下簡化波形。當開關頻率 fs

MOSFET在零電流處關斷。在MOSFET開通前,電流流 過另一個MOSFET的體二極管。當MOSFET開關開通, 另一個MOSFET體二極管的反向恢復應力很大。由于大 反向恢復電流尖峰不能夠流過諧振電路,它將流過另一個MOSFET。這就會產生很大的開關損耗,并且電流和 電壓尖峰能夠造成器件失效。因此,變換器需要避免工 作在這個區域。

對于開關頻率fs>fr1,諧振電路的輸入阻抗為感性。 MOSFET電流在開通后為負,關斷前為正。MOSFET開 關在零電壓處開通。因此,不會出現米勒效應從而使開 通損耗小化。MOSFET的輸入電容不會因米勒效應而 增加。而且體二極管的反向恢復電流是正弦波形的一部 分,并且當開關電流為正時,會成為開關電流的一部 分。因此,通常ZVS優于ZCS,因為它可以消除由反向 恢復電流、結電容放電引起的主要的開關損耗和應力。

圖9給出了過載情況下工作點移動軌跡。變換器正常工 作在ZVS區域,但過載時,工作點移動到ZCS區域,并 且串聯諧振變換器特性成為主導。過載情況下,開關電 流增加,ZVS消失,Lm被反射負載RLOAD完全短路。這 種情況通常會導致變換器工作在ZCS區域。ZCS(諧振 點以下)嚴重的缺點是:開通時為硬開關,從而導致 二極管反向恢復應力。此外,還會增加開通損耗,產生 噪聲或EMI。

二極管關斷伴隨非常大的dv/dt,因此在很大的di/dt條件 下,會產生很高的反向恢復電流尖峰。這些尖峰會比穩 態開關電流幅值大十倍以上。該大電流會使MOSFET損 耗大大增加、發熱嚴重。MOSFET結溫的升高會降低其 dv/dt的能力。在極端情況下,損壞MOSFET,使整個系 統失效。在特殊應用中,負載會從空載突變到過載,為 了能夠保持系統可靠性,系統應該能夠在更惡劣的工作 環境中運行。

圖10和圖11給出了過載時功率MOSFET開關波形。電流 尖峰發生在開通和關斷的瞬間。可以被認作是一種“暫 時直通”。圖12給出了過載時LLC諧振變換器的簡化波 形,圖13給出了可能導致器件潛在失效問題的工作模 式。

在t0 ~ t1時段,Q1導通,諧振電感電流Ir為正。由于 MOSFET Q1處于導通狀態,諧振電流流過MOSFET Q1 溝道,次級二極管D1導通。Lm不參與諧振,Cr與Lr諧 振。能量由輸入端傳送到輸出端。

在t1 ~ t2時段,Q1門極驅動信號開通,Q2關斷,輸出電 流在t1時刻為零。兩個電感電流Ir 和 Im相等。次級二極 管都不導通,兩個輸出二極管反向偏置。能量從輸出電 容而不是輸入端往外傳輸。因為輸出端與變壓器隔離, Lm與Lr串聯參與諧振。

在t2 ~ t3時段,MOSFET Q1 依然施加門極信號,Q2關 斷。在這個時段內,諧振電感電流方向改變。電流從 MOSFET Q2的源極流向漏極。D2開始導通,D1反向偏 置,輸出電流開始增加。能量回流到輸入端。

在t3 ~ t4時段,關斷MOSFET Q1和Q2的門極信號,諧振 電感電流開始流過MOSFET Q2的體二極管,這就為 MOSFET Q1創造了ZCS條件。

在t4 ~ t5時段,MOSFET Q2開通,流過一個很大的直通 電流,該電流由MOSFET Q1體二極管的反向恢復電流 產生。這不是偶然的直通,因為高、低端MOSFET正常 施加了門極信號;有如直通電流一樣,它會影響到該開 關電源。這會形成很高的反向恢復dv/dt,時常會擊穿 MOSFET Q2。這樣就會導致MOSFET失效,當使用的 MOSFET體二極管的反向恢復特性較差時,這種失效機 理會更加嚴重。

短路失效模式

最壞情況為短路。短路時,MOSFET導通電流非常高 (理論上無限高),頻率也會降低。當發生短路時,諧 振回路中Lm被旁路。LLC諧振變換器可以簡化為由Cr和 Lr組成的諧振電路,因為Cr只與Lr發生諧振。因此圖12 省略了t1 ~ t2時段,短路時次級二極管在CCM模式下連續 導通。短路狀態下工作模式幾乎與過載狀態下一樣,但 是短路狀態更糟糕,因為流經開關體二極管的反向恢復 電流更大。

圖14和圖15給出了短路時功率MOSFET的開關波形。短 路的波形與過載下的波形類似,但是其電流的等級更 高,MOSFET結溫度更高,更容易失效。

4 功率MOSFET失效機理

體二極管反向恢復dv/dt

二極管由通態到反向阻斷狀態的開關過程稱為反向恢 復。圖16給出了MOSFET體二極管反向恢復的波形。首 先體二極管正向導通,持續一段時間。這個時段中,二 極管P-N結積累電荷。當反向電壓加到二極管兩端時, 釋放儲存的電荷,回到阻斷狀態。釋放儲存電荷時會出 現以下兩種現象:流過一個大的反向電流和重構。在該 過程中,大的反向恢復電流流過MOSFET的體二極管, 是因為MOSFET的導通溝道已經切斷。一些反向恢復電 流從N+源下流過。

如圖18和圖19所示,Rb表示一個小電阻。基本上,寄生 BJT的基極和發射極被源極金屬短路。因此,寄生BJT 不能被激活。然而實際中,這個小電阻作為基極電阻, 當大電流流過Rb時,Rb產生足夠的壓降使寄生BJT基極發射極正向偏置,觸發寄生BJT。一旦寄生BJT開通, 會產生一個熱點,更多的電流將涌入該點。負溫度系數 的BJT會使流過的電流越來越高。終導致器件失效。 圖17給出了體二極管反向恢復時MOSFET失效波形。電 流等級超過反向恢復電流峰值Irm時正好使器件失效。這 意味著峰值電流觸發了寄生BJT。圖20和圖21給出了由 體二極管反向恢復引起芯片失效的燒毀標記。燒毀點是 芯片脆弱的點,很容易就會形成熱點,或者需要恢復 過多儲存電荷。這取決于芯片設計,不同設計技術會有 所變化。

如果反向恢復過程開始前P-N結溫度高于室溫,則更容 易形成熱點。所以電流等級和初始結溫度是器件失效的 兩個重要的因素。影響反向恢復電流峰值的主要因素 有溫度、正向電流和di/dt。圖22給出了反向恢復電流峰 值與正向電流等級的對應曲線。如圖22所示,大限度 抑制體二極管導通,可以降低反向恢復電流峰值。如果 di/dt增大,反向恢復電流峰值也增大。在LLC諧振變換 器中,功率MOSFET體二極管的di/dt與另一互補功率開 關的開通速度有關。所以降低其開通速度也可以減小 di/dt。

擊穿dv/dt

另一種失效模式是擊穿dv/dt。它是擊穿和靜態dv/dt的組 合。功率器件同時承受雪崩電流和位移電流。如果開關 過程非常快,在體二極管反向恢復過程中,漏源極電壓 可能超過大額定值。例如,在圖16中,漏源極電壓 大值超過了570V ,但器件為500V 額定電壓的 MOSFET。過高的電壓峰值使MOSFET進入擊穿模式, 位移電流通過P-N結。這就是雪崩擊穿的機理。另外, 過高的dv/dt會影響器件的失效點。dv/dt越大,建立起的 位移電流就越大。位移電流疊加到雪崩電流后,器件受 到傷害,導致失效。基本上,導致失效的根本原因是大 電流、高溫度引起的寄生BJT導通,但主要原因是體二 極管反向恢復或擊穿。實踐中,這兩種失效模式隨機發 生,有時同時發生。

5 解決方法

在啟動、過載或短路狀況下,過流保護方法有多種:

■增加開關頻率

■變頻控制以及 PWM控制

■采用分裂電容和鉗位二極管

為了實現這些方法,LLC諧振變換器需要增加額外的器件、改進控制電路或者重新進行散熱設計,這都增加了系統的成本。有一種更為簡單和高性價比的方法。由于體二極管在LLC諧振變換器中扮演了很重要的角色,它對失效機理至關重要,所以集中研究器件的體二極管特性是解決這個問題的好方法。越來越多的應用使用內嵌二極管作為關鍵的系統元件,因此體二極管的許多優勢得以實現。其中,金或鉑擴散和電子輻射是非常有效的 解決方法。這種方法可以控制載流子壽命,從而減少反 向恢復充電和反向恢復時間。隨著反向恢復充電的減 少,反向恢復電流峰值和觸發寄生BJT的可能性也隨之 降低。因此,在過流情況下,如過載或短路,這種帶有 改進的體二極管的新功率MOSFET可以提供更耐久、更 好的保護。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    147

    文章

    7229

    瀏覽量

    213945
  • LLC
    LLC
    +關注

    關注

    36

    文章

    570

    瀏覽量

    76937

原文標題:LLC 諧振變換器中常見MOSFET失效模式的分析與解決方法

文章出處:【微信號:Power-union,微信公眾號:電源聯盟】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    詳解LLC諧振變換器分析方法及設計流程

    分析方法,回顧了LLC諧振變換器的實際設計要素。其中包括設計變壓和選擇元器件。采用一設計實例,逐步說明設計流程,有助于工程師更加輕松
    的頭像 發表于 12-24 08:43 ?5.8w次閱讀
    詳解<b class='flag-5'>LLC</b>型<b class='flag-5'>諧振</b><b class='flag-5'>變換器</b>的<b class='flag-5'>分析</b>方法及設計流程

    拓撲篇丨LLC諧振變換器拓撲構成與工作原理分析

    還有很多常見問題,我們沒有列出來,也歡迎大家給留言溝通,小編隨時待命!您的留言很有可能就出現在我們下一期的內容中了哦。 后續我們會繼續為大家分享LLC諧振變換器拓撲如何進行建模仿真,并分析
    發表于 07-19 14:39

    LLC諧振變換器的研究

    LLC諧振變換器的研究諧振變換器相對硬開關PWM變換器,具有開關頻率高、關斷損耗小、效率高、重量
    發表于 07-26 08:05

    LLC諧振變換器的設計要素

    最近LCC諧振變換器備受關注,因為它優于常規串聯諧振變換器和并聯諧振變換器:在負載和輸入變 化較
    發表于 08-08 11:11

    資料分享:LLC 諧振變換器的研究

    模型,通過對模型的分析,得出能保證 MOSFET 實現 ZVS 的 LLC 參數設計方法;4.采用擴展描述函數法建立了 LLC 諧振
    發表于 09-28 20:36

    LLC諧振變換器中常見MOSFET失效模式有哪幾種?怎么解決?

    LLC諧振變換器中常見MOSFET失效模式有哪幾種?怎么解決?
    發表于 09-18 07:30

    LLC_諧振變換器_MOSFET失效模式分析

    發表于 03-09 17:19 ?7次下載

    LLC-諧振變換器-MOSFET失效模式分析

    開關(ZVS) 或零電流開關(ZCS) 拓撲允許采用高頻開關技術,可以 最大限度地降低開關損耗。ZVS拓撲允許工作在高頻開 關下,能夠改善效率,能夠降低應用的尺寸,還能夠降 低功率開關的應力,因此可以改善系統的可靠性。LLC 諧振半橋
    發表于 11-02 15:44 ?6次下載

    LLC諧振變換器的設計(20161103143640)

    LLC諧振變換器的主電路結構和工作原理給出了基于最優轉換效率的LLC諧振變換器
    發表于 12-09 11:00 ?44次下載

    LLC諧振變換器的設計要素

    本文介紹了LLC諧振變換器分析方法,回顧了LLC諧振
    發表于 12-09 10:53 ?19次下載

    LLC諧振變換器的設計過程和LLC諧振變換器的移相控制特性分析

    諧振變換技術是提升開關電源功率密度的有效途徑,近年來LLC諧振變換器技術獲得了廣泛的應用。為了擴展容量或減小輸出電流紋波,可以將
    發表于 12-13 11:40 ?156次下載
    <b class='flag-5'>LLC</b><b class='flag-5'>諧振</b><b class='flag-5'>變換器</b>的設計過程和<b class='flag-5'>LLC</b><b class='flag-5'>諧振</b><b class='flag-5'>變換器</b>的移相控制特性<b class='flag-5'>分析</b>

    LLC諧振變換器中常見MOSFET失效模式分析與解決方法

    LLC諧振變換器可以突破傳統諧振變換器的局限。正是由于這些原因,LLC
    的頭像 發表于 06-23 19:25 ?1.1w次閱讀
    <b class='flag-5'>LLC</b><b class='flag-5'>諧振</b><b class='flag-5'>變換器</b>中常見<b class='flag-5'>MOSFET</b><b class='flag-5'>失效</b><b class='flag-5'>模式</b>的<b class='flag-5'>分析</b>與解決方法

    SABER仿真在LLC諧振變換器開發與設計的應用

    分析LLC諧振變換器的工作原理,提出了一種利用計算機仿真軟件SABER輔助設計LLC諧振
    發表于 04-16 14:52 ?47次下載

    LLC諧振變換器的理論分析與最優化設計

    LLC諧振變換器的理論分析與最優化設計。
    發表于 05-13 10:44 ?67次下載

    一文詳解LLC諧振變換器失效模式

    提高功率密度已經成為電源變換器的發展趨勢。對于當今的開關電源(SMPS)而言,具有高可靠性也是非常重要的。LLC 諧振半橋變換器因其自身具有的多種優勢逐漸成為一種主流拓撲。這種拓撲得到
    的頭像 發表于 07-15 09:05 ?2507次閱讀
    一文詳解<b class='flag-5'>LLC</b><b class='flag-5'>諧振</b><b class='flag-5'>變換器</b>的<b class='flag-5'>失效</b><b class='flag-5'>模式</b>
    主站蜘蛛池模板: 泡妞高手在都市完整版视频免费| 成人在线观看免费视频| 在线精彩视频在线观看免费| 把腿张开再深点好爽宝贝动态图| 后入式啪gif动态图| 日本久久久免费高清| 岳的奶大又白又胖| 农民下乡在线观看3| 伊人久久亚洲综合天堂| 狠狠色狠狠色综合日日32| 中国午夜伦理片| 久热这里只有精品99国产6| 亚州天堂在线视频av| 囯产精品一品二区三区| 日美欧韩一区二去三区| 哺乳溢出羽月希中文字幕| 欧美成人免费观看久久| 99精品免费久久久久久久久蜜桃| 久久香蕉国产线看观看| 中国老女人xxhd69| 日产亚洲一区二区三区| 久草在在线免视频在线观看| 艳照门在线观看| 久久精品黄色| 5g在线视讯年龄确认海外禁止进入| 久久亚洲成a人片| 闺蜜撬开我的腿用黄瓜折磨我| 亚洲视频中文| 吉吉影音先锋av资源网| 夜色福利院在线观看免费| 日本高清无人区影院| 出轨的妻子在线观看| 乌克兰少妇大胆大BBW| 国产91专区| 91免费网站在线看入口黄| 秋霞电影院兔费理论观频84mb| 办公室沙发口爆12P| 野花韩国免费高清电影| 色窝窝亚洲AV在线观看| 国产欧美第一页| 亚洲乱码国产乱码精品精98|