色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

功率器件熱設計基礎(十三)——使用熱系數Ψth(j-top)獲取結溫信息

英飛凌工業半導體 ? 2025-01-20 17:33 ? 次閱讀

/ 前言 /

功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統成本,并保證系統的可靠性。

功率器件熱設計基礎系列文章會比較系統地講解熱設計基礎知識,相關標準和工程測量方法。

驅動IC電流越來越大,如采用DSO-8 300mil寬體封裝的EiceDRIVER 1ED3241MC12H和1ED3251MC12H 2L-SRC緊湊型單通道隔離式柵極驅動器,驅動電流高達+/-18A,且具有兩級電壓變化率控制和有源米勒鉗位,獲得UL 1577和VDE 0884-11認證,而1ED3125MU12F采用DSO-8 150mil窄體封裝,驅動電流也高達+/-10A,這對于器件的散熱是個挑戰。

更多大電流驅動器產品參考文末圖表。

面對驅動電路散熱設計的挑戰,關鍵一步是精確的熱設計,保證工作結溫不要超過器件允許的最高工作結溫。這就需要一種簡單的結溫估算方法,通過測量器件表面溫度來推算結溫,這是工程師的夢想。為此英飛凌在數據手冊上給出了熱系數Ψth(j-top),通過測溫和計算獲取結溫信息

EiceDRIVER IC散熱基礎知識

計算電子元器件的結溫TJ通常以物理測量值為基礎,需要知道環境溫度TA或其它需要且可以測量的元器件散熱通路上的溫度和熱阻,此外,還必須知道元器件功耗。

有了這三類數據,我們就能使用眾所周知的公式計算結溫:

a6baeaac-d711-11ef-9434-92fbcf53809c.jpg

其中,Rth(j-a),tot是從結點到環境的總熱阻,Pd是EiceDRIVER IC的功耗,TA的是環境溫度。總熱阻Rth(j-a),tot只能通過測量方式獲得,因為系統的布局、PCB在系統中的安裝方式以及系統內部的氣流對該值的影響很大。

根據圖1a驅動IC的橫截面圖,可以知道有兩個熱流路徑。主要路徑通常在引線框架和管腳上。芯片上的焊盤,通常連接到一個甚至多個管腳,這些管腳幫助熱量傳導到PCB,進而也改善了結到環境的散熱。其次,還有少量的熱流通過IC表面(例如上表面)直接傳到環境大氣中,此路徑散熱效率主要取決于芯片表面的對流條件,但它也會影響到結點到環境的總熱阻。熱流的第三個路徑是熱輻射,但這一路徑的影響很小,可以忽略。

a6db0ad0-d711-11ef-9434-92fbcf53809c.jpg

圖1a. 驅動IC的橫截面

相關的熱等效電路一般是根據這種散熱模型推導出來的,如圖1b所示。請注意,我們可以通過在集成電路表面安裝散熱器來改變結至環境總熱阻Rth(j-a),tot,并迫使主要熱量流經此路徑。然而,這一方案與大多數設計無緣,主要受限于爬電距離,而且PCB組裝工藝也會變得更加復雜,增加成本。

a6faacbe-d711-11ef-9434-92fbcf53809c.jpg

圖1b. 熱等效電路

圖中PD1部分遠小于PD2,因為結到IC表面的熱阻以及IC表面到環境的熱阻遠遠大于結到引線框架(即“管殼”),再到PCB環境的熱阻。這完全合情合理,因為塑封材料的導熱能力很差,而引線框架通常由銅制成,熱導率遠遠高于前者。

簡化的熱模型

將EiceDRIVER IC或功率晶體管的表面溫度作為結溫參考,這是一種理想的方法。根據圖2不難發現,芯片表面到封裝表面的距離d會對熱流產生影響。該距離越大,必然導致芯片表面溫度與器件表面的溫差越大。設計時也必須考慮到,即使兩個不同功率的集成電路具有相同的表面溫度,其功率耗散也可能完全不同。因此,在比較兩個功率集成電路時,如果不知道功率耗散和集成電路的封裝參數,表面溫度本身就沒有意義了。

a70d907c-d711-11ef-9434-92fbcf53809c.jpg

圖2a. 簡化熱流路徑后的IC和封裝橫截面

現在,對前面的熱模型經過修改,滿足工程方法的要求。我們現在可以合理地假定,PD1部分近似為零,并假定所有熱量都流經管腳。于是等效電路可簡化為圖2b所示的電路。這樣就能直接在IC表面測量的結溫。但是,通過上面完整熱路我們可以得知,由于對流的存在,該表面溫度將會稍低于實際結溫。

a7226420-d711-11ef-9434-92fbcf53809c.jpg

圖2b. 簡化后的熱等效電路


圖2b中有一個用虛線表示的元器件,它代表結點到上表面的熱系數psi(Ψ-),結到器件表面Ψth(j-top)的熱系數并非物理意義上的熱阻,因為根據圖2b中的熱等效電路,理論上我們已經假設此方向沒有熱流。此路徑的末端為開路的熱絕緣狀態。但即便如此,封裝上表面特定點的溫度與結點溫度之間仍存在某種關系。這種關系類似于熱阻:

a72b5b5c-d711-11ef-9434-92fbcf53809c.jpg

現在,在計算出功耗后,只需通過測量IC表面的溫度,就能確定EiceDRIVER柵極驅動IC的平均結溫。

熱系數Ψth(j-top)包含在EiceDRIVER數據表中,并且已考慮空氣引起的自然對流。它是通過仿真方法獲取的,并未經過測量驗證。我們可以通過優化系統中PCB位置,使用機柜內自然氣流或強制冷卻的方法來改善EiceDRIVER IC的散熱。

簡化模型的局限性

該簡化模型當然存在一些局限性,其中最重要的局限性包括以下幾點:

1

通過管腳到PCB的熱傳導和器件表面自然對流所占的熱流比率,或者說與應用安裝條件的相關性:

用戶可以通過在IC表面粘貼或固定小型散熱器來改善IC表面散熱,這肯定會對Ψ值的結果產生影響,使該值變得更大。

2

紅外測溫儀夠不到芯片表面時,就需要在測量點安裝溫度傳感器

溫度傳感器必須與IC表面進行充分的熱接觸。通常考慮使用導熱膠,但IC表面與傳感器之間的任何膠層都會對結果產生影響。如果溫度傳感器較大,其熱容也大,就會起到散熱器的效果。

3

PCB設計對仿真結果的影響:

PCB走線設計,特別是直接連接層的銅層厚度對整個散熱效果有很大的影響。引腳處的較大銅面積或較厚的銅層可改善EiceDRIVER IC的散熱。在帶Ψ-值的數據手冊中可以找到用于仿真Ψ-值的PCB設計作為條件。

a73ee9a6-d711-11ef-9434-92fbcf53809c.jpg

摘自EiceDRIVER 1ED32xxMC12H數據手冊

a74bab0a-d711-11ef-9434-92fbcf53809c.jpg

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 驅動器
    +關注

    關注

    53

    文章

    8266

    瀏覽量

    146769
  • 功率器件
    +關注

    關注

    41

    文章

    1787

    瀏覽量

    90548
  • 熱設計
    +關注

    關注

    11

    文章

    129

    瀏覽量

    26675
收藏 人收藏

    評論

    相關推薦

    功率器件設計基礎(十二)——功率半導體器件的PCB設計

    設計基礎系列文章會比較系統地講解熱設計基礎知識,相關標準和工程測量方法。功率半導體的電流密度隨著功率半導體芯片損耗降低,最高工作提升,器件
    的頭像 發表于 01-13 17:36 ?226次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(十二)——<b class='flag-5'>功率</b>半導體<b class='flag-5'>器件</b>的PCB設計

    功率器件設計基礎(十一)——功率半導體器件功率端子

    /前言/功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確設計,提高
    的頭像 發表于 01-06 17:05 ?172次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(十一)——<b class='flag-5'>功率</b>半導體<b class='flag-5'>器件</b>的<b class='flag-5'>功率</b>端子

    功率器件設計基礎(十)——功率半導體器件的結構函數

    樣品活動進行中,掃碼了解詳情/前言/功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確
    的頭像 發表于 12-23 17:31 ?322次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(十)——<b class='flag-5'>功率</b>半導體<b class='flag-5'>器件</b>的結構函數

    功率器件設計基礎(九)——功率半導體模塊的熱擴散

    樣品活動進行中,掃碼了解詳情/前言/功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確
    的頭像 發表于 12-16 17:22 ?688次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(九)——<b class='flag-5'>功率</b>半導體模塊的熱擴散

    功率器件設計基礎(八)——利用瞬態阻計算二極管浪涌電流

    /前言/功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確設計,提高
    的頭像 發表于 12-11 01:03 ?184次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(八)——利用瞬態<b class='flag-5'>熱</b>阻計算二極管浪涌電流

    功率器件設計基礎(七)——等效模型

    /前言/功率半導體熱設計是實現IGBT、SiCMOSFET高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確設計,提高
    的頭像 發表于 12-03 01:03 ?930次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(七)——<b class='flag-5'>熱</b>等效模型

    功率器件設計基礎(六)——瞬態測量

    功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確設計,提高
    的頭像 發表于 11-26 01:02 ?931次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(六)——瞬態<b class='flag-5'>熱</b>測量

    功率器件設計基礎(五)——功率半導體熱容

    /前言/功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確設計,提高
    的頭像 發表于 11-19 01:01 ?332次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(五)——<b class='flag-5'>功率</b>半導體熱容

    功率器件設計基礎(四)——功率半導體芯片溫度和測試方法

    功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確設計,提高
    的頭像 發表于 11-12 01:04 ?1024次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(四)——<b class='flag-5'>功率</b>半導體芯片溫度和測試方法

    功率器件設計基礎(三)——功率半導體殼溫和散熱器溫度定義和測試方法

    功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確設計,提高
    的頭像 發表于 11-05 08:02 ?1298次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(三)——<b class='flag-5'>功率</b>半導體殼溫和散熱器溫度定義和測試方法

    功率器件設計基礎(二)——阻的串聯和并聯

    /前言/功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確設計,提高
    的頭像 發表于 10-29 08:02 ?371次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b>的<b class='flag-5'>熱</b>設計基礎(二)——<b class='flag-5'>熱</b>阻的串聯和并聯

    功率器件設計基礎(一)——功率半導體的

    功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的設計基礎知識,才能完成精確設計,提高
    的頭像 發表于 10-22 08:01 ?1202次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>熱</b>設計基礎(一)——<b class='flag-5'>功率</b>半導體的<b class='flag-5'>熱</b>阻

    干貨!PCB Layout 設計指導

    接近 3 個功率損耗相同的熱源,但與只有 A 一個熱源時相比,阻更高。這是因為各個器件都受到了干擾,導致器件的周圍溫度上升。熱源之間的
    發表于 09-20 14:07

    車規級 | 功率半導體模塊封裝可靠性試驗-阻測試

    在因為功率器件相關原因所引起電子系統失效的原因中,有超過50%是因為溫度過高導致的失效。過高會導致電子系統性能降低、可靠性降低、壽命降
    的頭像 發表于 07-05 10:22 ?4617次閱讀
    車規級 | <b class='flag-5'>功率</b>半導體模塊封裝可靠性試驗-<b class='flag-5'>熱</b>阻測試

    功率器件損耗計算和選型要求

    對于常見功率器件,整流橋,電解電容,IGBT,MOS管,這些功率器件損耗功率該怎么計算? 尤
    發表于 06-12 16:44
    主站蜘蛛池模板: 火影忍者高清无码黄漫| WWW国产亚洲精品久久| 亚洲午夜久久久精品电影院| 96.8在线收听| 国产网红主播精品福利大秀专区| 亚洲精品久久久久一区二区三 | JAVASCRIPTJAVA水多多| 国产精品黄色大片| 看了n遍舍不得删的黄文| 婷婷四房播客五月天| 99久久久无码国产AAA精品| 黑丝制服影院| 天上人间影院久久国产| 99re2.久久热最新地址| 久久99热这里只频精品6| 脱女学小内内摸出水网站免费 | 日韩精品免费在线观看| 一道本av免费不卡播放| 成人免费观看国产高清| 女人被躁到高潮嗷嗷叫69| 伊人久99久女女视频精品免| 国产精品亚洲在钱视频| 日本不卡不码高清免费| 99久久久久精品国产免费麻豆 | 性色少妇AV蜜臀人妻无码| 教室里的激情电影| 日本久久不射| 99久久久国产精品免费调教| 久久视频在线视频观看精品15| 久久精品黄色| 性夜影院午夜看片| 抽插性奴中出乳精内射| 欧美人与善交大片| 扒开校花粉嫩小泬喷潮漫画| 欧美阿v在线天堂| bl肉yin荡受np各种play| 妺妺窝人体色WWW偷窥女厕| 最近免费中文MV在线字幕| 久久影院毛片一区二区| 1区2区3区4区产品不卡码网站| 大桥未久电影在线观看|