典型圖像傳感器的核心是CCD單元(charge-coupled device,電荷耦合器件)或標準CMOS單元(complementary meta-oxide semiconductor,互補金屬氧化物半導體)。CCD和CMOS傳感器具有類似的特性,它們被廣泛應用于商業攝像機上。不過,現代多數傳感器均使用CMOS單元,這主要是出于制造方面的考慮。傳感器和光學器件常常整合在一起用于制造晶片級攝像機,這種攝像機被用在類似于生物學或顯微鏡學等領域,如圖1所示。
圖1:整合了光學器件和顏色過濾器的圖像傳感器的常用排列
圖像傳感器是為滿足不同應用的特殊目標而設計的,它提供了不同級別的靈敏度和質量。想要熟悉各種傳感器,可查閱其廠商信息。例如,為了在硅基模和動態響應(用于實現光強度和顏色檢測)之間有一個最好的折中,對一個特定的半導體制造過程,需優化每個光電二極管傳感器單位的大小和組成成分。
對計算機視覺而言,采樣理論的效果具有重要意義,如目標場景的像素范圍就會用到Nyquist頻率。傳感器分辨率和光學器件能一起為每個像素提供足夠的分辨率,以便對感興趣特征進行成像,因此有這樣的結論:興趣特征的采樣(或成像)頻率應該是重要像素(對感興趣的特征而言)中最小像素大小的兩倍。當然,對成像精度而言,兩倍的過采樣僅僅是一個最低目標,在實際應用中,并不容易決定單像素寬度的特征。
對于給定的應用,要取得最好的結果,需校準攝像機系統,以便在不同光照和距離條件下確定像素位深度(bit depth)的傳感器噪聲以及動態范圍。為了能處理傳感器對任何顏色通道所產生的噪聲和非線性響應,并且檢測和校正像素壞點、處理幾何失真的建模,需發展合適的傳感器處理方法。如果使用測試模式來設計一個簡單標定方法,這種方法在灰度、顏色、特征像素大小等方面具有由細到粗的漸變,就會看到結果。
1、傳感器材料
硅制圖像傳感器應用最廣,當然也會使用其他材料,比如在工業和軍事應用中會用鎵(Ga)來覆蓋比硅更長的紅外波長。不同的攝像機,其圖像傳感器的分辨率會有所不同。從單像素光電晶體管攝像機(它通過一維直線掃描陣列用于工業應用),到普通攝像機上的二維長方形陣列(所有到球形整列的路徑均用于高分辨率成像),都有可能用到。(本章最后會介紹傳感器配置和攝像機配置)。
普通成像傳感器采用CCD、CMOS、BSI和Foveon方法進行制造。硅制圖像傳感器具有一個非線性的光譜響應曲線,這會很好地感知光譜的近紅外部分,但對藍色、紫色和近紫外部分就感知得不好(如圖2所示)。
圖2:幾種硅光電二極管的典型光譜響應。可以注意到,光電二極管在900納米附近的近紅外范圍內 具有高的敏感度,而在橫跨400納米~700納米的可見光范圍內具有非線性的敏感度。 由于標準的硅響應的緣故,從攝像機中去掉IR濾波器會增加近紅外的靈敏度。(光譜數據圖像的使用已獲得OSI光電股份有限公司的許可)
注意,當讀入原始數據,并將該數據離散化成數字像素時,會導致硅光譜響應。傳感器制造商在這個區域做了設計補償,然而,當根據應用標定攝像機系統并設計傳感器處理方法時,應該考慮傳感器的顏色響應。
2、傳感器光電二極管元件
圖像傳感器的關鍵在于光電二極管的大小或元件的大小。使用小光電二極管的傳感器元件所捕獲的光子數量沒有使用大的光電二極管多。如果元件尺寸小于可捕獲的可見光波長(如長度為400納米的藍光),那么為了校正圖像顏色,在傳感器設計中必須克服其他問題。傳感器廠商花費大量精力來設計優化元件大小,以確保所有的顏色能同等成像(如圖3所示)。在極端的情況下,由于缺乏累積的光子和傳感器讀出噪聲,小的傳感器可能對噪聲更加敏感。如果二極發光管傳感器元件太大,那么硅材料的顆粒大小和費用會增加,這沒有任何優勢可言。一般商業傳感器設備具有的傳感器元件大小至少為1平方微米,每個生產廠商會不同,但為了滿足某些特殊的需求會有一些折中。
圖3:基本顏色的波長分配。注意,基本顏**域相互重疊, 對所有的顏色而言,綠色是一個很好的單色替代品。
3、傳感器配置:馬賽克、Faveon和BSI
圖4顯示了多光譜傳感器設計的不同片內配置,包括馬賽克和堆疊方法。在馬賽克方法中,顏色過濾器被裝在每個元件的馬賽克模式上。Faveon傳感器堆疊方法依賴于顏色波長深度滲透到半導體材料的物理成分,其中每種顏色對硅材料進行不同程度的滲透,從而對各自的顏色進行成像。整個元件大小可適用于所有顏色,所以不需要為每種顏色分別配置元件。
圖4:(左圖)堆疊RGB元件的Foveon方法:在每個元件位置都有RGB顏色, 并在不同的深度吸收不同的波長;(右圖)標準的馬賽克元件:在每個光電二極管上面放置一個RGB濾波器,每個濾波器只允許特定的波長穿過每個光電二極管。
反向照明(back-side illuminated,BSI)傳感器結構具有更大的元件區域,并且每個元件要聚集更多的光子,因而在晶粒上重新布置了傳感器接線。
傳感器元件的布置也影響到顏色響應。例如,圖5顯示了基本顏色(R、G、B)傳感器以及白色傳感器的不同排列,其中白色傳感器(W)有一個非常清晰或非彩色的顏色濾波器。傳感器的排列考慮到了一定范圍的像素處理,如在傳感器對一個像素信息的處理過程中,會組合在鄰近元件的不同配置中所選取的像素,這些像素信息會優化顏色響應或空間顏色分辨率。實際上,某些應用僅僅使用原始的傳感器數據并執行普通的處理過程來增強分辨率或者構造其他顏色混合物。
圖5:元件顏色的幾個不同馬賽克配置,包括白色、基本RGB顏色和次要CYM元件。 每種配置為傳感器處理過程優化顏色或空間分辨率提供了不同的方法(圖像來自于《Building Intelligent Systems》一書,并得到Intel出版社的使用許可)。
整個傳感器的大小也決定了鏡頭的大小。一般來說,鏡頭越大通過的光越多,因此,對攝影應用而言,較大的傳感器能更好地適用于數字攝像機。另外,元件在顆粒上排列的縱橫比(aspect ratio)決定了像素的幾何形狀,如,4:3和3:2的縱橫比分別用于數字攝像機和35毫米的膠片。傳感器配置的細節值得讀者去理解,這樣才能夠設計出最好的傳感器處理過程和圖像預處理程序。
-
傳感器
+關注
關注
2552文章
51359瀏覽量
755662 -
圖像傳感器
+關注
關注
68文章
1915瀏覽量
129637
發布評論請先 登錄
相關推薦
評論