色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習,恰恰是人工“不”智能的體現

Hf1h_BigDataDig ? 來源:YXQ ? 2019-07-12 10:14 ? 次閱讀

每當提起“無人駕駛”汽車技術如何強大,又被大眾賦予了怎樣的期待,都會讓人想起HBO電視劇Silicon Valley《硅谷》中的一個情節:

硅谷大亨風險資本家Gregory的助手安排了一輛無人駕駛汽車送創業公司的小員工Jared回家,本以為這個劇情只是為了詮釋一種硅谷式傲慢,剛上車時一切也都很順利,誰知路程走了一半,這輛汽車突然開始執行日程中之前設置好的指令,罔顧乘客Jared高呼著“Stop”和“Help”,自顧自的奔向了另一個目的地:四千英里開外的一個荒無人煙的海中孤島。

電視劇《硅谷》截圖

Jared最終得救了,就在大家以為劇情要改為《荒島余生》后。對多數觀眾而言這只是劇中設置的一個黑色笑點,而藝術本就源于現實,在現實中,若無人駕駛的汽車突然失控,會導致怎樣的后果才是真的難以想象。

2016年5月7日,美國佛羅里達州,一位駕駛特斯拉Model S的車主使用了自動駕駛(Auto Pilot)模式后,發生車禍并身亡。這是第一起自動駕駛模式下的致死車禍,這次事故也讓所有為無人駕駛狂熱的人們不得不直面這項技術帶來的安全隱憂。

特斯拉曾發布消息:

“無人車的正確率達到99%相對容易,但要達到99.9999%卻要困難的多,而這才是我們最終的目標,因為以70英里每秒行駛的車如果出現故障后果不堪設想。”

特斯拉并沒有說100%。

在未來,即便這些科技公司聲稱無人駕駛的技術已經發展到無比成熟,或許依然有人很難放心的坐上一輛無人駕駛的汽車,從心理角度來說,這類汽車相對“自我操控”而言永遠都“不夠安全”。

無人駕駛技術的巨大發展離不開深度學習算法,而在貝葉斯網絡之父朱迪亞·珀爾(Judea Pearl)的眼里,深度學習,恰恰是人工“不”智能的體現,因為其研究對象是相關關系而非因果關系,處于因果關系之梯的最底層。珀爾曾在《量子雜志》采訪中說到:深度學習取得的所有巨大成就在某種程度上都不過是對數據的曲線擬合而已。從數學層次的角度來看,不管你如何巧妙地操作數據,以及你在操作數據時讀取的內容,它仍然是一個曲線擬合的訓練過程,盡管它看起來比較復雜。

人工智能的發展在很多方面都得益于珀爾早期的研究,他卻在最新著作《為什么:關于因果關系的新科學》中推翻了自己,珀爾認為,當前的人工智能和機器學習其實處于因果關系之梯的最低層級,只可被動地接受觀測結果,考慮的是“如果我看到……會怎樣”這類問題。而強人工智能,則需要實現第三層級的“反事實”推理。

例如,如果無人駕駛汽車的程序設計者想讓汽車在新情況下做出不同的反應,那么他就必須明確地在程序中添加這些新反應的描述代碼。機器無法自己弄明白手里拿著一瓶威士忌的行人可能對鳴笛做出不同反應,處于因果關系之梯最底層的任何運作系統都不可避免地缺乏這種靈活性和適應性。所以說,無法進行因果推斷的人工智能只是“人工智障”,是永遠不可能透過數據看到世界的因果本質的。

因果關系之梯的每一層級都有一種代表性生物

(來源:《為什么:關于因果關系的新科學》馬雅·哈雷爾繪圖)

2016年3月,AlphaGo 以4比1的成績戰勝了多年來被認為是最強的人類頂尖圍棋高手李世石,震驚了世界,在為人們帶來危機感的同時,也點燃了很多人對人工智能發展的暢想。

可惜,這一人工智能壯舉只能證明:對讓機器完成某些任務來說,深度學習是有用的。人們最終意識到,在可模擬的環境和狀態下,AlphaGo的算法適用于大規模概率空間的智能搜索,而對于那些難以模擬的環境里的決策問題(包括上文提到的自動駕駛),這類算法也還是束手無策。深度學習采用的方法類似卷積神經網絡,并不以嚴謹或清晰的方式處理不確定性,且網絡的體系結構可以自行發展。完成一個新的訓練后,程序員也不知道它正在執行什么計算,或者為何它們有效。

AlphaGo團隊并沒有在一開始就預測到這個程序會在一年或者五年內擊敗人類最好的棋手,他們也無法解釋為什么程序執行能產生這樣好的結果。如果機器人都如同 AlphaGo一般,缺乏清晰性,那么人類也無法與他們進行有意義的交流,使之“智能”的工作。

假定你的家中有一個機器人,當你睡覺的時候,機器人打開了吸塵器,開始工作,在這時你告訴它,“你不該吵醒我。”你的意圖是讓它明白,此時打開吸塵器是錯誤行為,但你絕不希望它將你的抱怨理解為不能再在樓上使用吸塵器。

那么此時機器人就必須理解背后的因果關系:吸塵器制造噪音,噪音吵醒人,而這會使你不高興。

這句對我們人類而言無比簡短的口令實際包含了豐富的內容。機器人需要明白:你不睡覺的時候它可以吸塵,家中無人的時候它也可以吸塵,又或者吸塵器開啟靜音模式的時候,它仍然可以吸塵。這樣看來,是否覺得我們日常溝通所含的信息量實在是太過龐大?

一個聰明的機器人考慮他/她的行為的因果影響。

(來源:《為什么:關于因果關系的新科學》馬雅·哈雷爾繪圖)

所以說,讓機器人真正“智能”的關鍵在于理解“我應該采取不同的行為”這句話,無論這句話是由人告訴它的,還是由它自己分析所得出的結論。如果一個機器人知道自己當前的動機是要做 X=x0,同時它能評估一下,說如果換一個選擇,做 X=x1,結果會不會更好,那它就是強人工智能。

《人類簡史》的作者尤瓦爾·赫拉利(Yuval Noah Harari)認為人類發展出描繪虛構事物的能力正是人類進化過程中的認知革命,反事實推理是人類獨有的能力,也是真正的智能。人類的每一次進步與發展,都離不開反事實推理,想象力幫助人類生存、適應并最終掌控了整個世界。若想實現真正的強人工智能,則應嘗試將因果論提供的反事實推理工具,真正加以應用。

針對能否開發出具備自由意志的機器人的問題,珀爾的答案是絕對會。他認為:人們必須理解如何編程機器人,以及能從中得到什么。由于某種原因,就進化方面而言這種自由意志在計算層面也將是需要的。機器人具備自由意志的第一個跡象將是反事實溝通,如“你應該做得更好”。如果一組踢足球的機器人開始用這種語言溝通,那么我們將知道它們具備了自由意志。“你應該傳球給我,我剛才一直在等,但你沒有把球傳給我!”這種“你應該”的句式意味著你本應該做什么,但是沒做。因此機器人產生自由意志的第一個征兆是溝通,第二個是踢出更好的足球。

以前人們討論強人工智能大多只限于哲學層面,學術界也一直對“強人工智能”保持著謹慎的態度,并不敢抱有太多奢望。但科學的進步從不因失敗而停止,不管是無人駕駛,還是其他各項人工智能技術的發展,最終都依賴于“人”,人類會研究出能夠理解因果對話的機器人嗎?能制造出像三歲孩童那樣富有想象力的人工智能嗎?回答這些問題的關鍵依然離不開“人:,如果人類自身還無法理解因果之梯,又要怎么樣使“人工”變得“智能”?

機器不必復制人類,卻可以比人類表現的更優秀,這著實是一個可怕的事實。若是能用因果關系來取代關聯推理,沿著因果關系之梯,走入反事實推理的世界,那么機器的崛起便不可阻擋。珀爾在書中為如何實現這一目標給出了相當清晰通俗的講解。

回想起來,其實一個人的日常生活與“人工智能”這個詞并沒有產生多少緊密關聯,但很多人也曾在得知AlphaGo戰勝李世石那個瞬間,產生了一股莫名又強烈的敬畏感。科技的發展速度似乎總是超出我們的想象,打開手機搜索“重大突破”這個關鍵詞,瞬間就會被滿眼的科技快餐所淹沒,機器究竟會變成怎樣?它們又會怎么對待人類?只有試著去理解因果關系,才能在面對這些問題時,少一些茫然,多一些信念。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1794

    文章

    47642

    瀏覽量

    239674
  • 深度學習
    +關注

    關注

    73

    文章

    5512

    瀏覽量

    121415

原文標題:貝葉斯網絡之父:當前的機器學習其實處于因果關系之梯的最低層級

文章出處:【微信號:BigDataDigest,微信公眾號:大數據文摘】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    嵌入式和人工智能究竟是什么關系?

    、連接主義和深度學習等不同的階段。目前,人工智能已經廣泛應用于各種領域,如自然語言處理、計算機視覺、智能推薦等。 嵌入式系統和人工智能在許
    發表于 11-14 16:39

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之一,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度
    的頭像 發表于 11-14 15:17 ?795次閱讀

    人工智能、機器學習深度學習存在什么區別

    人工智能指的是在某種程度上顯示出類似人類智能的設備。AI有很多技術,但其中一個很大的子集是機器學習——讓算法從數據中學習
    發表于 10-24 17:22 ?2520次閱讀
    <b class='flag-5'>人工智能</b>、機器<b class='flag-5'>學習</b>和<b class='flag-5'>深度</b><b class='flag-5'>學習</b>存在什么區別

    《AI for Science:人工智能驅動科學創新》第一章人工智能驅動的科學創新學習心得

    人工智能:科學研究的加速器 第一章清晰地闡述了人工智能作為科學研究工具的強大功能。通過機器學習深度學習等先進技術,AI能夠處理和分析海量
    發表于 10-14 09:12

    FPGA在人工智能中的應用有哪些?

    FPGA(現場可編程門陣列)在人工智能領域的應用非常廣泛,主要體現在以下幾個方面: 一、深度學習加速 訓練和推理過程加速:FPGA可以用來加速深度
    發表于 07-29 17:05

    深度學習算法在嵌入式平臺上的部署

    隨著人工智能技術的飛速發展,深度學習算法在各個領域的應用日益廣泛。然而,將深度學習算法部署到資源受限的嵌入式平臺上,仍然是一個具有挑戰性的任
    的頭像 發表于 07-15 10:03 ?1639次閱讀

    基于AI深度學習的缺陷檢測系統

    在工業生產中,缺陷檢測是確保產品質量的關鍵環節。傳統的人工檢測方法不僅效率低下,且易受人為因素影響,導致誤檢和漏檢問題頻發。隨著人工智能技術的飛速發展,特別是深度學習技術的崛起,基于A
    的頭像 發表于 07-08 10:30 ?1629次閱讀

    人工智能、機器學習深度學習是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機器學習(Machine Learning, ML)和深度學習(Deep Learning,
    的頭像 發表于 07-03 18:22 ?1390次閱讀

    人工智能深度學習的五大模型及其應用領域

    隨著科技的飛速發展,人工智能(AI)技術特別是深度學習在各個領域展現出了強大的潛力和廣泛的應用價值。深度學習作為人工智能的一個核心分支,通過
    的頭像 發表于 07-03 18:20 ?4859次閱讀

    深度學習常用的Python庫

    深度學習作為人工智能的一個重要分支,通過模擬人類大腦中的神經網絡來解決復雜問題。Python作為一種流行的編程語言,憑借其簡潔的語法和豐富的庫支持,成為了深度學習研究和應用的首選工具。
    的頭像 發表于 07-03 16:04 ?693次閱讀

    深度學習與卷積神經網絡的應用

    隨著人工智能技術的飛速發展,深度學習和卷積神經網絡(Convolutional Neural Network, CNN)作為其中的重要分支,已經在多個領域取得了顯著的應用成果。從圖像識別、語音識別
    的頭像 發表于 07-02 18:19 ?1009次閱讀

    TensorFlow與PyTorch深度學習框架的比較與選擇

    深度學習作為人工智能領域的一個重要分支,在過去十年中取得了顯著的進展。在構建和訓練深度學習模型的過程中,深度
    的頭像 發表于 07-02 14:04 ?1033次閱讀

    深度學習與傳統機器學習的對比

    人工智能的浪潮中,機器學習深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于機器
    的頭像 發表于 07-01 11:40 ?1509次閱讀

    FPGA在深度學習應用中或將取代GPU

    現場可編程門陣列 (FPGA) 解決了 GPU 在運行深度學習模型時面臨的許多問題 在過去的十年里,人工智能的再一次興起使顯卡行業受益匪淺。英偉達 (Nvidia) 和 AMD 等公司的股價也大幅
    發表于 03-21 15:19

    為什么深度學習的效果更好?

    導讀深度學習是機器學習的一個子集,已成為人工智能領域的一項變革性技術,在從計算機視覺、自然語言處理到自動駕駛汽車等廣泛的應用中取得了顯著的成功。深度
    的頭像 發表于 03-09 08:26 ?670次閱讀
    為什么<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的效果更好?
    主站蜘蛛池模板: 办公室韩国电影免费完整版 | 久久综合色视频 | 国产精品人妻99一区二 | 欧美另类z0z000高清 | 探花口爆颜射乳交日韩 | 国产成人精品电影在线观看 | 国产一区二区三区乱码在线观看 | 欧美精品九九99久久在免费线 | 国产精品私人玩物在线观看 | 久久天天躁狠狠躁夜夜呲 | 人人模人人干 | 亚洲 欧美 国产 在线 日韩 | 我年轻漂亮的继坶2中字在线播放 | 国产成人精品自线拍 | XXOO麻豆国产在线九九爱 | 免费人成视频X8X8国产更快乐 | 3a丝袜论坛 | 影音先锋影院中文无码 | 渔夫床满艳史bd高清在线直播 | 97在线视频免费 | 91精品婷婷国产综合久久8 | 51国产午夜精品免费视频 | 亚洲在线2018最新无码 | 国产成人教育视频在线观看 | 国产精品俺来也在线观看 | 艳鉧动漫1~6全集观看在线 | 亚洲视频网站欧美视频网站 | 无限资源在线观看高清 | 国产综合自拍 偷拍在线 | 久久国产精品麻豆AV影视 | 久久6699精品国产人妻 | 约艺术院校96年清纯白嫩 | 吉吉影音先锋av资源网 | 东北足疗店妓女在线观看 | 99精品影视 | 国产亚洲美女精品久久久2020 | 国精产品砖一区二区三区糖心 | 国产AV无码成人黄网站免费 | 王小军怎么了最新消息 | 亚州AV人片一区二区三区99久 | 欧美激情一区二区三区四区 |