色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何利用深度學習技術處理圖像水印

WpOh_rgznai100 ? 來源:fqj ? 2019-06-07 11:32 ? 次閱讀

水印作為一種保護版權的有效方式被廣泛地應用于海量的互聯網圖像,針對水印的各種處理顯得越來越重要,比如水印的檢測和水印的去除與反去除。在這里我們和大家分享一下業余期間在水印智能化處理上的一些實踐和探索,希望可以幫助大家在更好地做到對他人圖像版權保護的同時,也能更好地防止自己的圖像被他人濫用。

我們大家在日常生活中如果下載和使用了帶有水印的互聯網圖像,往往既不美觀也可能會構成侵權。為了避免使用帶有水印的圖像帶來的各種影響,最直接的做法就是將帶有水印的圖像找出來丟棄不用,此外還有一種不推薦的做法就是去掉圖像上的水印后再使用。

接下來我們將會圍繞上述兩種大家常見的做法展開,首先介紹如何利用深度學習技術快速搭建一個水印檢測器,實現水印的自動檢測,同時我們還會進一步展示在水印檢測的基礎上如何利用深度學習技術設計一個水印去除器,自動將圖像上的水印去除。

一個包羅萬象的水印數據集

無論是搭建水印檢測器或是水印去除器,都需要海量水印圖像作為數據基礎。然而現實中并沒有直接可以使用的水印圖像數據集。因此,我們的首要任務是構建一個水印圖像數據集。首先我們要收集各式各樣的水印,為了保證后續模型良好的泛化性能,水印的種類要盡可能的多,水印樣式也要盡可能的豐富。

如何利用深度學習技術處理圖像水印

我們一共收集了80種來自于公司、組織和個人的水印,包括了中文、英文和logo等不同樣式。接下來就是制作帶水印的圖像,為了保證圖像數據的一般性,我們將公開的PASCAL VOC 2012數據集的圖像作為原始的無水印圖像,然后利用圖像處理工具將收集的80種水印以隨機的大小、位置和透明度打在原始圖像上,同時記錄下水印的位置信息,從而得到第一個大規模的水印圖像數據集。

水印數據集的80%被劃分為訓練集,剩余的20%被劃分為測試集,為了適應現實場景中需要機器自動檢測和去除從未見過的水印的需求,我們確保訓練集中的水印不會出現在測試集中,這樣可以很好地模擬現實生活中的使用場景。現在水印圖像數據集已經準備就緒,接下來就是如何去搭建水印檢測器和去除器。

能夠一眼看穿各類水印的檢測器

水印在圖像中的視覺顯著性很低,具有面積小,顏色淺,透明度高等特點,帶水印圖像與未帶水印圖像之間的差異往往很小,區分度較低。為了構建一個有效的水印檢測器,我們將圖像水印檢測問題轉化為一種特殊的單目標檢測任務,即判斷圖像中是否有水印這一單目標存在。

當前基于深度學習的目標檢測模型有很多,可以分為以Faster R-CNN為代表的兩階段目標檢測算法和以YOLO和RetinaNet等為代表的單階段目標檢測算法。前者是先由算法生成一系列待檢測目標的候選框,再通過卷積神經網絡進行候選框的分類;后者則不用產生候選框,直接將目標邊框定位的問題轉化為回歸問題處理。一般來說單階段的算法在檢測速度上會更快,但檢測精度上會有所下降。我們在這里分別基于Faster R-CNN、YOLOv2和RetinaNet這三種目標檢測算法來搭建水印檢測器,從對比的結果來看,三種方法都展現了令人滿意的檢測效果,其中以RetinaNet最優。

如何利用深度學習技術處理圖像水印

為了更加直觀地展示我們搭建的基于RetinaNet的水印檢測器的效果,我們將測試集上的水印檢測結果可視化,藍色的框是實際的水印區域,紅色的框是檢測器定位的水印區域,從可視化結果可以看出,對于未出現在訓練集中的水印,我們的水印檢測器依然可以一眼就看穿。有了這樣一款水印檢測器,我們就可以在海量圖像中快速又準確地檢測出帶水印的圖像。

往前走一步:從檢測到去除

如果只是利用AI來自動檢測水印,是不是總感覺少了點什么?接下來我們在水印檢測的基礎上往前再走一步,利用AI實現水印的自動去除。因為水印在圖像上的面積較小,所以直接對整幅圖像進行水印去除顯得過于粗暴,也會嚴重拖慢去除速度。針對這種情況我們結合水印檢測設計了更貼合實際操作的水印處理流程,我們先通過水印檢測器檢測出水印區域,然后對水印區域進行水印去除操作。

水印去除問題可以看作是一個從圖像到圖像的轉換問題,即將帶水印的圖像轉換為無水印的圖像。這里我們使用全卷積網絡來搭建水印去除器,實現這種圖像到圖像的轉換。全卷積網絡的輸入是帶水印的圖像區域,經過多層卷積處理后輸出無水印的圖像區域,我們希望網絡輸出的無水印圖像能夠和原始的無水印圖像盡可能的接近。

如何利用深度學習技術處理圖像水印

為了盡可能提升網絡輸出無水印圖像的質量,我們采用U-net結構替換了傳統的編解碼器結構,將輸入信息添加到輸出中,從而盡可能保留了圖像的背景信息。同時我們采用感知損失(Perceptual Loss)和一范數損失(L1 Loss)相結合的方式替換傳統的均方誤差損失(MSE Loss),使輸出的無水印圖像在細節和紋理上能夠更貼近原圖。

我們將水印去除器在測試集上的一些去水印效果可視化,左列是輸入的水印區域,右列是輸出的無水印區域。從可視化的結果可以看出對未知水印的去除效果還是不錯的。

寫在最后

針對水印的各種處理一直是研究的熱點,也吸引了越來越多的關注。本文介紹了如何通過當前流行的深度學習技術來搭建水印的檢測器和去除器,實現對水印的智能處理。

在后續的文章中,我們會進一步介紹一種更強大的水印去除器,也會提出一些對水印反去除的思考。值得注意的是,版權保護是大家一直要堅持的事情,水印去除的研究目的更多是為了通過攻擊水印來驗證其是否有效,從而促進水印反去除能力的提升。保護版權,AI有責。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 數據集
    +關注

    關注

    4

    文章

    1209

    瀏覽量

    24789
  • 深度學習
    +關注

    關注

    73

    文章

    5512

    瀏覽量

    121404

原文標題:如何利用深度學習技術處理圖像水印?

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    圖像處理應用中深度學習的重要性分析

    作者:Martin Cassel,Silicon Software 工業應用中FPGA 上的神經元網絡(CNN) 深度學習應用憑借其在識別應用中超高的預測準確率,在圖像處理領域獲得了極
    的頭像 發表于 12-13 11:24 ?6304次閱讀

    圖像水印

    本人學生。畢業設計是基于Labview 數字圖像水印利用LabVIEW平臺,在圖像中嵌入二值水印圖像
    發表于 05-19 14:34

    基于深度學習和3D圖像處理的精密加工件外觀缺陷檢測系統

    檢測,檢測準確性和檢測穩定性較差、容易誤判。 基于深度學習和3D圖像處理的精密加工件外觀缺陷檢測系統創新性結合深度
    發表于 03-08 13:59

    基于改進曲率尺度空間技術圖像水印算法

    提出一種新的魯棒性水印算法,利用改進的曲率尺度空間技術,提取圖像的少量較頑強角點,用于重建受幾何攻擊的圖像。選取2 個chirp 信號作為
    發表于 03-24 09:56 ?12次下載

    一種有效的數字圖像水印算法

    隨著因特網的發展,數字水印技術被廣泛的應用于數字圖像,音頻,視頻等多媒體產品的版權保護。該文提出了一種有效的數字水印算法。首先利用混沌映射將
    發表于 07-09 10:19 ?19次下載

    基于DWT域的自適應彩色圖像水印算法

    近年來,彩色圖像水印技術逐漸成為了研究的熱點。本文提出了一種基于DWT 域的自適應彩色圖像水印算法。該算法
    發表于 08-27 10:50 ?15次下載

    基于HVS和小波變換的彩色圖像水印算法

    提出了一種將彩色水印圖像嵌入到原始彩色圖像中的數字水印算法。該算法對水印的加密采取了Arnold結合矩陣變換的方法,并
    發表于 07-06 15:58 ?16次下載

    深度學習圖像超清化的應用

    深度學習的出現使得算法對圖像的語義級操作成為可能。本文即是介紹深度學習技術
    發表于 09-30 11:15 ?1次下載
    <b class='flag-5'>深度</b><b class='flag-5'>學習</b>在<b class='flag-5'>圖像</b>超清化的應用

    基于Weber準則的圖像脆弱盲水印技術研究

    提出了一種應用于醫學圖像認證的基于Weber準則的脆弱盲水印技術,基于Weber準則選擇圖像中的像素并插入脆弱水印。由于這種
    發表于 12-07 10:13 ?1次下載
    基于Weber準則的<b class='flag-5'>圖像</b>脆弱盲<b class='flag-5'>水印</b><b class='flag-5'>技術</b>研究

    如何在圖像處理中應用深度學習技術的詳細資料概述

    深度學習應用憑借其在識別應用中超高的預測準確率,在圖像處理領域獲得了極大關注,這勢必將提升現有圖像處理
    的頭像 發表于 03-30 11:31 ?4477次閱讀

    深度學習圖像分割的方法和應用

    分析和分類以及機器人和自動駕駛車輛的圖像處理等應用上。 許多計算機視覺任務需要對圖像進行智能分割,以理解圖像中的內容,并使每個部分的分析更加容易。今天的
    的頭像 發表于 11-27 10:29 ?3225次閱讀

    結合BEMD與Hilbert的重復嵌入圖像水印算法

    )與 Hilbert曲線的重復嵌入圖像水印算法。首先,利用 Arnold變換對水印圖像進行置亂處理
    發表于 04-21 14:37 ?1次下載
    結合BEMD與Hilbert的重復嵌入<b class='flag-5'>圖像</b><b class='flag-5'>水印</b>算法

    使用深度學習進行三維圖像處理

    的 DICOM 或 NIfTI 圖像進行分析。還可以在顯微鏡檢查中使用三維圖像處理技術,以檢測和分析組織標本或跟蹤神經元。? 除醫學成像以外,還可以使用三維
    的頭像 發表于 11-05 17:43 ?3318次閱讀

    深度學習中的圖像分割

    深度學習可以學習視覺輸入的模式,以預測組成圖像的對象類。用于圖像處理的主要
    的頭像 發表于 05-05 11:35 ?1291次閱讀

    OpenCV庫在圖像處理深度學習中的應用

    本文深入淺出地探討了OpenCV庫在圖像處理深度學習中的應用。從基本概念和操作,到復雜的圖像變換和深度
    的頭像 發表于 08-18 11:33 ?936次閱讀
    主站蜘蛛池模板: 成人精品视频在线| 亚洲色在线| 国内高清在线观看视频| 99久久精品免费看国产免费| 亚洲 欧美 中文 日韩 视频| 欧美疯狂做受xxxxx喷水| 国产在线不卡| 第一福利视频网站在线| 4399日本电影完整版在线观看免费| 无码成A毛片免费| 欧美xxbb| 九九热视频免费| 风车动漫(p)_在线观看官网| 97干97吻| 怡春院国产精品视频| 校园高h肉耽文| 色老板影视| 啪啪激情婷婷久久婷婷色五月| 久草在在线免视频在线观看| 国产精品亚洲高清一区二区 | 午夜免费福利小电影| 欧美 亚洲 有码中文字幕| 久久亚洲精品AV成人无| 黄色亚洲片| 国语精彩对白2021| 国产一区二区精品视频| 国产精品一区二区20P| 国产成人a视频在线观看| 啊叫大点声欠CAO的SAO贷| 99久久精品国产国产毛片| 重口味av| 中文字幕无码一区二区免费| 一本道亚洲区免费观看| 亚洲精品无码AV中文字幕蜜桃| 亚洲va久久久久| 亚洲VA欧美VA天堂V国产综合| 无码国产精品高潮久久9| 哇嘎在线精品视频在线观看| 无限资源在线看影院免费观看| 我要女人的全黄录像| 我们中文在线观看免费完整版|