瑞典的研究人員在碳化硅(SiC)上生長出更薄的IIIA族氮化物結構,以期實現高功率和高頻薄層高電子遷移率晶體管(T-HEMT)和其他器件。
從圖1可以看出,新結構采用高質量的60nm無晶界氮化鋁(AlN)成核層,而不是大約1-2μm厚的氮化鎵(GaN)緩沖層,以避免大面積擴展缺陷。成核層允許高質量的GaN在0.2μm的厚度內生長。
圖1:(a)常規和(b)低TBR AlN成核,沿GaN / AlN / SiC界面沿[11-20]方向的橫截面TEM圖像。(c)GaN /低TBR AlN NL / SiC的HRTEM圖像。(d)GaN /低TBR AlN NL界面處的HRTEM。(e)低TBR AlN NL / SiC界面處HRTEM圖像。
正常厚度的緩沖層用于轉變和降低由于GaN和SiC之間3.5%晶格失配所引起的缺陷。需注意的是GaN與藍寶石和硅等其他襯底的失配率要高得多。這樣的緩沖層會為高功率和高頻器件帶來許多問題。這些層通常會摻雜碳或鐵以增加電阻,目的是將電流限制在溝道區域,避免寄生傳導的泄漏效應。這些摻雜無會產生電荷俘獲狀態,這可能導致其對性能的負面影響,例如射頻操作中的電流崩潰。
另外,較薄的器件還應具有較低的熱阻,從而改善熱管理。來自SweGaN AB,查爾姆斯理工大學和林雪平大學的團隊評論說:“GaN / AlN / SiC界面產生的空洞和位錯等結構缺陷會引入熱邊界電阻(TBR),導致HEMT中通道溫度升高30-40%。”
降低昂貴材料的需求量是該項工作的另一個亮點。據研究人員估計,包括前體和氣體在內的原材料需求量將降低90%,同時由于所需的生長時間縮短,處理成本也隨之降低。
新的AlN成核工藝避免了導致柱狀生長的顆粒狀形態的產生——造成的這種缺陷會被帶入覆蓋的GaN中。通常情況下,顆粒形態的產生是由于生長表面上鋁原子的低遷移率造成的。
IIIA氮化物材料在硅面4H-SiC上生長。熱壁金屬有機化學氣相沉積法(MOCVD)用于制造具有60nm AlN成核,200nm GaN溝道,高達1.5nm的AlN中間層,10-14nm AlGaN勢壘(~30%Al)的外延結構,和2nm GaN蓋帽層。采用低熱邊界電阻(低TBR)技術生產的60nm AlN可由熱壁生長實現。
盡管結構厚度更薄,但在低108 /cm-2范圍內的穿透位錯密度比具有相同厚度的典型GaN層低兩個數量級,研究人員如此估計。在具有2nm GaN帽和14nm Al0.29Ga0.71N勢壘的結構上的非接觸式霍爾測量得到9.8×1012/cm2的二維電子氣(2DEG)密度和2050cm2 / V-s遷移率。薄層電阻為315Ω/m2。
測試T-HEMT是在具有2nm GaN帽,10nm Al0.3Ga0.7N勢壘和1nm AlN中間層的材料上制備的。基于鉭的觸點用于源極/漏極,接觸電阻為0.3Ω-mm。
圖2:(a)直流漏極電流 - 電壓(IDS-VDS)特性,(b)傳輸特性以及10V漏極偏置(VDS)下的柵極和漏極電流與柵極電壓(VGS)的函數關系,(c)跨導(gm)作為柵極電位的函數,和(d)作為T-HEMT的VDSQ的函數的射頻輸出功率密度。(e)沒有頂部活性層的異質結構的垂直和側向擊穿特性。
該器件實現了1.1A / mm的高導通電流密度和1.3Ω-mm的低歸一化導通電阻。(圖2)飽和電流可維持高達30V的漏極偏壓。采用10V漏極偏壓時,夾斷很明顯,跨導達到500mS / mm。閾值擺幅取決于柵極長度:0.1μm為250mV / decade,0.2μm為130mV / decade。對于0.1μm和0.2μm的柵極,擊穿電壓分別為70V和140V。
研究人員表明“擊穿電壓和柵極長度之間的線性關系表明,由于柵極長度和柵極 - 漏極間距的限制,擊穿是橫向發生的。”
柵極 - 漏極間距為2μm,遠遠低于通常用于GaN HEMT的通常10-20μm,目的是為了提高功率性能。而傳統的GaN功率HEMT具有微米級的柵極長度。
30GHz時的負載牽引測量在40V漏極 - 源極靜態偏置(VDSQ)下產生5.8W / mm的峰值射頻功率密度。
在沒有上AlN / AlGaN層的外延疊層上的擊穿測量在橫向和垂直方向上產生高達1.5kV擊穿電壓。該團隊說:“在這兩種情況下,擊穿是由于觸點的不良劃定。因此,預期堆疊的實際擊穿電壓會更高。也就是說,擊穿受表面限制,并證實沒有界面載體。”
-
SiC
+關注
關注
29文章
2869瀏覽量
62816 -
GaN
+關注
關注
19文章
1956瀏覽量
73897
原文標題:用于高頻和功率電子器件的GaN-SiC混合材料
文章出處:【微信號:iawbs2016,微信公眾號:寬禁帶半導體技術創新聯盟】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論