色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

在數據分析和可視化中最有用的50個Matplotlib圖表

電子工程師 ? 來源:lq ? 2018-12-28 09:30 ? 次閱讀

本文為 Python數據之道(ID:PyDataRoad)作者投稿。Lemon,氣候變化及新能源領域從業者,跨界玩 Python,秉承“讓數據更有價值”的理念,希望能透過數據感知世界。

本文總結了 Matplotlib 以及 Seaborn 用的最多的 50 個圖形,掌握這些圖形的繪制,對于數據分析的可視化有莫大的作用,強烈推薦大家閱讀后續內容。

在數據分析和可視化中最有用的 50 個 Matplotlib 圖表。 這些圖表列表允許您使用 python 的 matplotlib 和 seaborn 庫選擇要顯示的可視化對象。

介紹

這些圖表根據可視化目標的 7 個不同情景進行分組。 例如,如果要想象兩個變量之間的關系,請查看“關聯”部分下的圖表。 或者,如果您想要顯示值如何隨時間變化,請查看“變化”部分,依此類推。

有效圖表的重要特征:

在不歪曲事實的情況下傳達正確和必要的信息

設計簡單,您不必太費力就能理解它。

從審美角度支持信息而不是掩蓋信息。

信息沒有超負荷。

準備工作

在代碼運行前先引入下面的設置內容。 當然,單獨的圖表,可以重新設置顯示要素。

# !pip install brewer2mpl

import numpy as np

import pandas as pd

import matplotlib as mpl

import matplotlib.pyplot as plt

import seaborn as sns

import warnings; warnings.filterwarnings(action='once')

large = 22; med = 16; small = 12

params = {'axes.titlesize': large,

'legend.fontsize': med,

'figure.figsize': (16, 10),

'axes.labelsize': med,

'axes.titlesize': med,

'xtick.labelsize': med,

'ytick.labelsize': med,

'figure.titlesize': large}

plt.rcParams.update(params)

plt.style.use('seaborn-whitegrid')

sns.set_style("white")

%matplotlib inline

# Version

print(mpl.__version__) #> 3.0.0

print(sns.__version__) #> 0.9.0

3.0.2

0.9.0

一、關聯 (Correlation)

關聯圖表用于可視化 2 個或更多變量之間的關系。 也就是說,一個變量如何相對于另一個變化。

1 散點圖(Scatter plot)

散點圖是用于研究兩個變量之間關系的經典的和基本的圖表。 如果數據中有多個組,則可能需要以不同顏色可視化每個組。 在 matplotlib 中,您可以使用plt.scatterplot()方便地執行此操作。

# Import dataset

midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")

# Prepare Data

# Create as many colors as there are unique midwest['category']

categories = np.unique(midwest['category'])

colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]

# Draw Plot for Each Category

plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')

for i, category in enumerate(categories):

plt.scatter('area', 'poptotal',

data=midwest.loc[midwest.category==category, :],

s=20, cmap=colors[i], label=str(category))

# "c=" 修改為 "cmap=",Python數據之道 備注

# Decorations

plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),

xlabel='Area', ylabel='Population')

plt.xticks(fontsize=12); plt.yticks(fontsize=12)

plt.title("Scatterplot of Midwest Area vs Population", fontsize=22)

plt.legend(fontsize=12)

plt.show()

pIYBAFwlfa6ABDoQAACpWCb5Cbc580.png

圖1

2 帶邊界的氣泡圖(Bubble plot with Encircling)

有時,您希望在邊界內顯示一組點以強調其重要性。 在這個例子中,你從數據框中獲取記錄,并用下面代碼中描述的encircle()來使邊界顯示出來。

from matplotlib import patches

from scipy.spatial importConvexHull

import warnings; warnings.simplefilter('ignore')

sns.set_style("white")

# Step 1: Prepare Data

midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")

# As many colors as there are unique midwest['category']

categories = np.unique(midwest['category'])

colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]

# Step 2: Draw Scatterplot with unique color for each category

fig = plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')

for i, category in enumerate(categories):

plt.scatter('area', 'poptotal', data=midwest.loc[midwest.category==category, :],

s='dot_size', cmap=colors[i], label=str(category), edgecolors='black', linewidths=.5)

# "c=" 修改為 "cmap=",Python數據之道 備注

# Step 3: Encircling

# https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot

def encircle(x,y, ax=None, **kw):

ifnot ax: ax=plt.gca()

p = np.c_[x,y]

hull = ConvexHull(p)

poly = plt.Polygon(p[hull.vertices,:], **kw)

ax.add_patch(poly)

# Select data to be encircled

midwest_encircle_data = midwest.loc[midwest.state=='IN', :]

# Draw polygon surrounding vertices

encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="k", fc="gold", alpha=0.1)

encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="firebrick", fc="none", linewidth=1.5)

# Step 4: Decorations

plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),

xlabel='Area', ylabel='Population')

plt.xticks(fontsize=12); plt.yticks(fontsize=12)

plt.title("Bubble Plot with Encircling", fontsize=22)

plt.legend(fontsize=12)

plt.show()

圖2

3 帶線性回歸最佳擬合線的散點圖 (Scatter plot with linear regression line of best fit)

如果你想了解兩個變量如何相互改變,那么最佳擬合線就是常用的方法。 下圖顯示了數據中各組之間最佳擬合線的差異。 要禁用分組并僅為整個數據集繪制一條最佳擬合線,請從下面的sns.lmplot()調用中刪除hue='cyl'參數

# Import Data

df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

df_select = df.loc[df.cyl.isin([4,8]), :]

# Plot

sns.set_style("white")

gridobj = sns.lmplot(x="displ", y="hwy", hue="cyl", data=df_select,

height=7, aspect=1.6, robust=True, palette='tab10',

scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))

# Decorations

gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))

plt.title("Scatterplot with line of best fit grouped by number of cylinders", fontsize=20)

plt.show()

圖3

針對每列繪制線性回歸線

或者,可以在其每列中顯示每個組的最佳擬合線。 可以通過在sns.lmplot()中設置col=groupingcolumn參數來實現,如下:

# Import Data

df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

df_select = df.loc[df.cyl.isin([4,8]), :]

# Each line in its own column

sns.set_style("white")

gridobj = sns.lmplot(x="displ", y="hwy",

data=df_select,

height=7,

robust=True,

palette='Set1',

col="cyl",

scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))

# Decorations

gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))

plt.show()

圖3-2

4 抖動圖 (Jittering with stripplot)

通常,多個數據點具有完全相同的 X 和 Y 值。 結果,多個點繪制會重疊并隱藏。 為避免這種情況,請將數據點稍微抖動,以便您可以直觀地看到它們。 使用 seaborn 的stripplot()很方便實現這個功能。

# Import Data

df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

# Draw Stripplot

fig, ax = plt.subplots(figsize=(16,10), dpi= 80)

sns.stripplot(df.cty, df.hwy, jitter=0.25, size=8, ax=ax, linewidth=.5)

# Decorations

plt.title('Use jittered plots to avoid overlapping of points', fontsize=22)

plt.show()

圖4

5 計數圖 (Counts Plot)

避免點重疊問題的另一個選擇是增加點的大小,這取決于該點中有多少點。 因此,點的大小越大,其周圍的點的集中度越高。

# Import Data

df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

df_counts = df.groupby(['hwy', 'cty']).size().reset_index(name='counts')

# Draw Stripplot

fig, ax = plt.subplots(figsize=(16,10), dpi= 80)

sns.stripplot(df_counts.cty, df_counts.hwy, size=df_counts.counts*2, ax=ax)

# Decorations

plt.title('Counts Plot - Size of circle is bigger as more points overlap', fontsize=22)

plt.show()

圖5

6 邊緣直方圖 (Marginal Histogram)

邊緣直方圖具有沿 X 和 Y 軸變量的直方圖。 這用于可視化 X 和 Y 之間的關系以及單獨的 X 和 Y 的單變量分布。 這種圖經常用于探索性數據分析(EDA)。

圖6

7 邊緣箱形圖 (Marginal Boxplot)

邊緣箱圖與邊緣直方圖具有相似的用途。 然而,箱線圖有助于精確定位 X 和 Y 的中位數、第25和第75百分位數。

圖7

8 相關圖 (Correllogram)

相關圖用于直觀地查看給定數據框(或二維數組)中所有可能的數值變量對之間的相關度量。

# Import Dataset

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")

# Plot

plt.figure(figsize=(12,10), dpi= 80)

sns.heatmap(df.corr(), xticklabels=df.corr().columns, yticklabels=df.corr().columns, cmap='RdYlGn', center=0, annot=True)

# Decorations

plt.title('Correlogram of mtcars', fontsize=22)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.show()

圖8

9 矩陣圖 (Pairwise Plot)

矩陣圖是探索性分析中的最愛,用于理解所有可能的數值變量對之間的關系。 它是雙變量分析的必備工具。

# Load Dataset

df = sns.load_dataset('iris')

# Plot

plt.figure(figsize=(10,8), dpi= 80)

sns.pairplot(df, kind="scatter", hue="species", plot_kws=dict(s=80, edgecolor="white", linewidth=2.5))

plt.show()

圖9

# Load Dataset

df = sns.load_dataset('iris')

# Plot

plt.figure(figsize=(10,8), dpi= 80)

sns.pairplot(df, kind="reg", hue="species")

plt.show()

圖9-2

二、偏差 (Deviation)

10 發散型條形圖 (Diverging Bars)

如果您想根據單個指標查看項目的變化情況,并可視化此差異的順序和數量,那么散型條形圖 (Diverging Bars) 是一個很好的工具。 它有助于快速區分數據中組的性能,并且非常直觀,并且可以立即傳達這一點。

# Prepare Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")

x = df.loc[:, ['mpg']]

df['mpg_z'] = (x - x.mean())/x.std()

df['colors'] = ['red'if x < 0else'green'for x in df['mpg_z']]

df.sort_values('mpg_z', inplace=True)

df.reset_index(inplace=True)

# Draw plot

plt.figure(figsize=(14,10), dpi= 80)

plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=5)

# Decorations

plt.gca().set(ylabel='$Model$', xlabel='$Mileage$')

plt.yticks(df.index, df.cars, fontsize=12)

plt.title('Diverging Bars of Car Mileage', fontdict={'size':20})

plt.grid(linestyle='--', alpha=0.5)

plt.show()

圖10

11 發散型文本 (Diverging Texts)

發散型文本 (Diverging Texts)與發散型條形圖 (Diverging Bars)相似,如果你想以一種漂亮和可呈現的方式顯示圖表中每個項目的價值,就可以使用這種方法。

# Prepare Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")

x = df.loc[:, ['mpg']]

df['mpg_z'] = (x - x.mean())/x.std()

df['colors'] = ['red'if x < 0else'green'for x in df['mpg_z']]

df.sort_values('mpg_z', inplace=True)

df.reset_index(inplace=True)

# Draw plot

plt.figure(figsize=(14,14), dpi= 80)

plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z)

for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):

t = plt.text(x, y, round(tex, 2), horizontalalignment='right'if x < 0else'left',

verticalalignment='center', fontdict={'color':'red'if x < 0else'green', 'size':14})

# Decorations

plt.yticks(df.index, df.cars, fontsize=12)

plt.title('Diverging Text Bars of Car Mileage', fontdict={'size':20})

plt.grid(linestyle='--', alpha=0.5)

plt.xlim(-2.5, 2.5)

plt.show()

圖11

12 發散型包點圖 (Diverging Dot Plot)

發散型包點圖 (Diverging Dot Plot)也類似于發散型條形圖 (Diverging Bars)。 然而,與發散型條形圖 (Diverging Bars)相比,條的缺失減少了組之間的對比度和差異。

# Prepare Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")

x = df.loc[:, ['mpg']]

df['mpg_z'] = (x - x.mean())/x.std()

df['colors'] = ['red'if x < 0else'darkgreen'for x in df['mpg_z']]

df.sort_values('mpg_z', inplace=True)

df.reset_index(inplace=True)

# Draw plot

plt.figure(figsize=(14,16), dpi= 80)

plt.scatter(df.mpg_z, df.index, s=450, alpha=.6, color=df.colors)

for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):

t = plt.text(x, y, round(tex, 1), horizontalalignment='center',

verticalalignment='center', fontdict={'color':'white'})

# Decorations

# Lighten borders

plt.gca().spines["top"].set_alpha(.3)

plt.gca().spines["bottom"].set_alpha(.3)

plt.gca().spines["right"].set_alpha(.3)

plt.gca().spines["left"].set_alpha(.3)

plt.yticks(df.index, df.cars)

plt.title('Diverging Dotplot of Car Mileage', fontdict={'size':20})

plt.xlabel('$Mileage$')

plt.grid(linestyle='--', alpha=0.5)

plt.xlim(-2.5, 2.5)

plt.show()

圖12

13 帶標記的發散型棒棒糖圖 (Diverging Lollipop Chart with Markers)

帶標記的棒棒糖圖通過強調您想要引起注意的任何重要數據點并在圖表中適當地給出推理,提供了一種對差異進行可視化的靈活方式。

圖13

14 面積圖 (Area Chart)

通過對軸和線之間的區域進行著色,面積圖不僅強調峰和谷,而且還強調高點和低點的持續時間。 高點持續時間越長,線下面積越大。

import numpy as np

import pandas as pd

# Prepare Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/economics.csv", parse_dates=['date']).head(100)

x = np.arange(df.shape[0])

y_returns = (df.psavert.diff().fillna(0)/df.psavert.shift(1)).fillna(0) * 100

# Plot

plt.figure(figsize=(16,10), dpi= 80)

plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] >= 0, facecolor='green', interpolate=True, alpha=0.7)

plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] <= 0, facecolor='red', interpolate=True, alpha=0.7)

# Annotate

plt.annotate('Peak 1975', xy=(94.0, 21.0), xytext=(88.0, 28),

bbox=dict(boxstyle='square', fc='firebrick'),

arrowprops=dict(facecolor='steelblue', shrink=0.05), fontsize=15, color='white')

# Decorations

xtickvals = [str(m)[:3].upper()+"-"+str(y) for y,m in zip(df.date.dt.year, df.date.dt.month_name())]

plt.gca().set_xticks(x[::6])

plt.gca().set_xticklabels(xtickvals[::6], rotation=90, fontdict={'horizontalalignment': 'center', 'verticalalignment': 'center_baseline'})

plt.ylim(-35,35)

plt.xlim(1,100)

plt.title("Month Economics Return %", fontsize=22)

plt.ylabel('Monthly returns %')

plt.grid(alpha=0.5)

plt.show()

pIYBAFwlfbqAZ8_ZAAD1NwcQOrM779.png

圖14

三、排序 (Ranking)

15 有序條形圖 (Ordered Bar Chart)

有序條形圖有效地傳達了項目的排名順序。 但是,在圖表上方添加度量標準的值,用戶可以從圖表本身獲取精確信息。

pIYBAFwlfbqAXc2_AADGW3M66cg319.png

圖15

16 棒棒糖圖 (Lollipop Chart)

棒棒糖圖表以一種視覺上令人愉悅的方式提供與有序條形圖類似的目的。

# Prepare Data

df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())

df.sort_values('cty', inplace=True)

df.reset_index(inplace=True)

# Draw plot

fig, ax = plt.subplots(figsize=(16,10), dpi= 80)

ax.vlines(x=df.index, ymin=0, ymax=df.cty, color='firebrick', alpha=0.7, linewidth=2)

ax.scatter(x=df.index, y=df.cty, s=75, color='firebrick', alpha=0.7)

# Title, Label, Ticks and Ylim

ax.set_title('Lollipop Chart for Highway Mileage', fontdict={'size':22})

ax.set_ylabel('Miles Per Gallon')

ax.set_xticks(df.index)

ax.set_xticklabels(df.manufacturer.str.upper(), rotation=60, fontdict={'horizontalalignment': 'right', 'size':12})

ax.set_ylim(0, 30)

# Annotate

for row in df.itertuples():

ax.text(row.Index, row.cty+.5, s=round(row.cty, 2), horizontalalignment= 'center', verticalalignment='bottom', fontsize=14)

plt.show()

pIYBAFwlfbqAVFYSAAC4_BojaLc036.png

圖16

17 包點圖 (Dot Plot)

包點圖表傳達了項目的排名順序,并且由于它沿水平軸對齊,因此您可以更容易地看到點彼此之間的距離。

# Prepare Data

df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())

df.sort_values('cty', inplace=True)

df.reset_index(inplace=True)

# Draw plot

fig, ax = plt.subplots(figsize=(16,10), dpi= 80)

ax.hlines(y=df.index, xmin=11, xmax=26, color='gray', alpha=0.7, linewidth=1, linestyles='dashdot')

ax.scatter(y=df.index, x=df.cty, s=75, color='firebrick', alpha=0.7)

# Title, Label, Ticks and Ylim

ax.set_title('Dot Plot for Highway Mileage', fontdict={'size':22})

ax.set_xlabel('Miles Per Gallon')

ax.set_yticks(df.index)

ax.set_yticklabels(df.manufacturer.str.title(), fontdict={'horizontalalignment': 'right'})

ax.set_xlim(10, 27)

plt.show()

pIYBAFwlfbuADGMlAADRCiMzeEk445.png

圖17

18 坡度圖 (Slope Chart)

坡度圖最適合比較給定人/項目的“前”和“后”位置。

pIYBAFwlfbyAA7U3AACsUPQg8Gw297.png

圖18

19 啞鈴圖 (Dumbbell Plot)

啞鈴圖表傳達了各種項目的“前”和“后”位置以及項目的等級排序。 如果您想要將特定項目/計劃對不同對象的影響可視化,那么它非常有用。

pIYBAFwlfbyAKgc2AACnU8vvL9I633.png

圖19

四、分布 (Distribution)

20 連續變量的直方圖 (Histogram for Continuous Variable)

直方圖顯示給定變量的頻率分布。 下面的圖表示基于類型變量對頻率條進行分組,從而更好地了解連續變量和類型變量。

# Import Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Prepare data

x_var = 'displ'

groupby_var = 'class'

df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var)

vals = [df[x_var].values.tolist() for i, df in df_agg]

# Draw

plt.figure(figsize=(16,9), dpi= 80)

colors = [plt.cm.Spectral(i/float(len(vals)-1)) for i in range(len(vals))]

n, bins, patches = plt.hist(vals, 30, stacked=True, density=False, color=colors[:len(vals)])

# Decoration

plt.legend({group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])})

plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22)

plt.xlabel(x_var)

plt.ylabel("Frequency")

plt.ylim(0, 25)

plt.xticks(ticks=bins[::3], labels=[round(b,1) for b in bins[::3]])

plt.show()

pIYBAFwlfb2AHrLbAACU8sE0OjA940.png

圖20

21 類型變量的直方圖 (Histogram for Categorical Variable)

類型變量的直方圖顯示該變量的頻率分布。 通過對條形圖進行著色,可以將分布與表示顏色的另一個類型變量相關聯。

# Import Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Prepare data

x_var = 'manufacturer'

groupby_var = 'class'

df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var)

vals = [df[x_var].values.tolist() for i, df in df_agg]

# Draw

plt.figure(figsize=(16,9), dpi= 80)

colors = [plt.cm.Spectral(i/float(len(vals)-1)) for i in range(len(vals))]

n, bins, patches = plt.hist(vals, df[x_var].unique().__len__(), stacked=True, density=False, color=colors[:len(vals)])

# Decoration

plt.legend({group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])})

plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22)

plt.xlabel(x_var)

plt.ylabel("Frequency")

plt.ylim(0, 40)

plt.xticks(ticks=bins, labels=np.unique(df[x_var]).tolist(), rotation=90, horizontalalignment='left')

plt.show()

pIYBAFwlfb2Aagu3AAC9iMbu8io145.png

圖21

22 密度圖 (Density Plot)

密度圖是一種常用工具,用于可視化連續變量的分布。 通過“響應”變量對它們進行分組,您可以檢查 X 和 Y 之間的關系。以下情況用于表示目的,以描述城市里程的分布如何隨著汽缸數的變化而變化。

# Import Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Draw Plot

plt.figure(figsize=(16,10), dpi= 80)

sns.kdeplot(df.loc[df['cyl'] == 4, "cty"], shade=True, color="g", label="Cyl=4", alpha=.7)

sns.kdeplot(df.loc[df['cyl'] == 5, "cty"], shade=True, color="deeppink", label="Cyl=5", alpha=.7)

sns.kdeplot(df.loc[df['cyl'] == 6, "cty"], shade=True, color="dodgerblue", label="Cyl=6", alpha=.7)

sns.kdeplot(df.loc[df['cyl'] == 8, "cty"], shade=True, color="orange", label="Cyl=8", alpha=.7)

# Decoration

plt.title('Density Plot of City Mileage by n_Cylinders', fontsize=22)

plt.legend()

plt.show()

pIYBAFwlfb6AE9LUAAB8_vg5IPQ769.png

圖22

23 直方密度線圖 (Density Curves with Histogram)

帶有直方圖的密度曲線匯集了兩個圖所傳達的集體信息,因此您可以將它們放在一個圖中而不是兩個圖中。

# Import Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Draw Plot

plt.figure(figsize=(13,10), dpi= 80)

sns.distplot(df.loc[df['class'] == 'compact', "cty"], color="dodgerblue", label="Compact", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})

sns.distplot(df.loc[df['class'] == 'suv', "cty"], color="orange", label="SUV", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})

sns.distplot(df.loc[df['class'] == 'minivan', "cty"], color="g", label="minivan", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})

plt.ylim(0, 0.35)

# Decoration

plt.title('Density Plot of City Mileage by Vehicle Type', fontsize=22)

plt.legend()

plt.show()

pIYBAFwlfb-AJj12AACctn50F3Q759.png

圖23

24 Joy Plot

Joy Plot允許不同組的密度曲線重疊,這是一種可視化大量分組數據的彼此關系分布的好方法。 它看起來很悅目,并清楚地傳達了正確的信息。 它可以使用基于 matplotlib 的 joypy 包輕松構建。 (『Python數據之道』注:需要安裝 joypy 庫)

# !pip install joypy

# Python數據之道 備注

import joypy

# Import Data

mpg = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Draw Plot

plt.figure(figsize=(16,10), dpi= 80)

fig, axes = joypy.joyplot(mpg, column=['hwy', 'cty'], by="class", ylim='own', figsize=(14,10))

# Decoration

plt.title('Joy Plot of City and Highway Mileage by Class', fontsize=22)

plt.show()

pIYBAFwlfb-Aa5qXAAC8kNSI9U0998.png

圖24

25 分布式包點圖 (Distributed Dot Plot)

分布式包點圖顯示按組分割的點的單變量分布。 點數越暗,該區域的數據點集中度越高。 通過對中位數進行不同著色,組的真實定位立即變得明顯。

pIYBAFwlfcCAcfJaAACh5DnnFEU253.png

圖25

26 箱形圖 (Box Plot)

箱形圖是一種可視化分布的好方法,記住中位數、第25個第45個四分位數和異常值。 但是,您需要注意解釋可能會扭曲該組中包含的點數的框的大小。 因此,手動提供每個框中的觀察數量可以幫助克服這個缺點。

例如,左邊的前兩個框具有相同大小的框,即使它們的值分別是5和47。 因此,寫入該組中的觀察數量是必要的。

# Import Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Draw Plot

plt.figure(figsize=(13,10), dpi= 80)

sns.boxplot(x='class', y='hwy', data=df, notch=False)

# Add N Obs inside boxplot (optional)

def add_n_obs(df,group_col,y):

medians_dict = {grp[0]:grp[1][y].median() for grp in df.groupby(group_col)}

xticklabels = [x.get_text() for x in plt.gca().get_xticklabels()]

n_obs = df.groupby(group_col)[y].size().values

for (x, xticklabel), n_ob in zip(enumerate(xticklabels), n_obs):

plt.text(x, medians_dict[xticklabel]*1.01, "#obs : "+str(n_ob), horizontalalignment='center', fontdict={'size':14}, color='white')

add_n_obs(df,group_col='class',y='hwy')

# Decoration

plt.title('Box Plot of Highway Mileage by Vehicle Class', fontsize=22)

plt.ylim(10, 40)

plt.show()

圖26

27 包點+箱形圖 (Dot + Box Plot)

包點+箱形圖 (Dot + Box Plot)傳達類似于分組的箱形圖信息。 此外,這些點可以了解每組中有多少數據點。

# Import Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Draw Plot

plt.figure(figsize=(13,10), dpi= 80)

sns.boxplot(x='class', y='hwy', data=df, hue='cyl')

sns.stripplot(x='class', y='hwy', data=df, color='black', size=3, jitter=1)

for i in range(len(df['class'].unique())-1):

plt.vlines(i+.5, 10, 45, linestyles='solid', colors='gray', alpha=0.2)

# Decoration

plt.title('Box Plot of Highway Mileage by Vehicle Class', fontsize=22)

plt.legend(title='Cylinders')

plt.show()

pIYBAFwlfcGASpPYAACpABqsL_U411.png

圖27

28 小提琴圖 (Violin Plot)

小提琴圖是箱形圖在視覺上令人愉悅的替代品。 小提琴的形狀或面積取決于它所持有的觀察次數。 但是,小提琴圖可能更難以閱讀,并且在專業設置中不常用。

# Import Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Draw Plot

plt.figure(figsize=(13,10), dpi= 80)

sns.violinplot(x='class', y='hwy', data=df, scale='width', inner='quartile')

# Decoration

plt.title('Violin Plot of Highway Mileage by Vehicle Class', fontsize=22)

plt.show()

圖28

29 人口金字塔 (Population Pyramid)

人口金字塔可用于顯示由數量排序的組的分布。 或者它也可以用于顯示人口的逐級過濾,因為它在下面用于顯示有多少人通過營銷渠道的每個階段。

# Read data

df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/email_campaign_funnel.csv")

# Draw Plot

plt.figure(figsize=(13,10), dpi= 80)

group_col = 'Gender'

order_of_bars = df.Stage.unique()[::-1]

colors = [plt.cm.Spectral(i/float(len(df[group_col].unique())-1)) for i in range(len(df[group_col].unique()))]

for c, group in zip(colors, df[group_col].unique()):

sns.barplot(x='Users', y='Stage', data=df.loc[df[group_col]==group, :], order=order_of_bars, color=c, label=group)

# Decorations

plt.xlabel("$Users$")

plt.ylabel("Stage of Purchase")

plt.yticks(fontsize=12)

plt.title("Population Pyramid of the Marketing Funnel", fontsize=22)

plt.legend()

plt.show()

pIYBAFwlfcKANszhAADjIBVE56U852.png

圖29

30 分類圖 (Categorical Plots)

由 seaborn庫 提供的分類圖可用于可視化彼此相關的2個或更多分類變量的計數分布。

# Load Dataset

titanic = sns.load_dataset("titanic")

# Plot

g = sns.catplot("alive", col="deck", col_wrap=4,

data=titanic[titanic.deck.notnull()],

kind="count", height=3.5, aspect=.8,

palette='tab20')

fig.suptitle('sf')

plt.show()

pIYBAFwlfcKAaqR7AAAhDb5s370703.png

圖30

# Load Dataset

titanic = sns.load_dataset("titanic")

# Plot

sns.catplot(x="age", y="embark_town",

hue="sex", col="class",

data=titanic[titanic.embark_town.notnull()],

orient="h", height=5, aspect=1, palette="tab10",

kind="violin", dodge=True, cut=0, bw=.2)

pIYBAFwlfcOAMqh4AACF2zufVq0983.png

圖30-2

五、組成 (Composition)

31 華夫餅圖 (Waffle Chart)

可以使用 pywaffle包 創建華夫餅圖,并用于顯示更大群體中的組的組成。

(『Python數據之道』注:需要安裝 pywaffle 庫)

#! pip install pywaffle

# Reference: https://stackoverflow.com/questions/41400136/how-to-do-waffle-charts-in-python-square-piechart

from pywaffle importWaffle

# Import

df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Prepare Data

df = df_raw.groupby('class').size().reset_index(name='counts')

n_categories = df.shape[0]

colors = [plt.cm.inferno_r(i/float(n_categories)) for i in range(n_categories)]

# Draw Plot and Decorate

fig = plt.figure(

FigureClass=Waffle,

plots={

'111': {

'values': df['counts'],

'labels': ["{0} ({1})".format(n[0], n[1]) for n in df[['class', 'counts']].itertuples()],

'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 12},

'title': {'label': '# Vehicles by Class', 'loc': 'center', 'fontsize':18}

},

},

rows=7,

colors=colors,

figsize=(16, 9)

)

pIYBAFwlfcSAExQbAACFYd_Z63M629.png

圖31

pIYBAFwlfcSAW6DCAAIX2b5HHwM395.png

圖31-2

32 餅圖 (Pie Chart)

餅圖是顯示組成的經典方式。 然而,現在通常不建議使用它,因為餡餅部分的面積有時會變得誤導。 因此,如果您要使用餅圖,強烈建議明確記下餅圖每個部分的百分比或數字。

# Import

df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Prepare Data

df = df_raw.groupby('class').size()

# Make the plot with pandas

df.plot(kind='pie', subplots=True, figsize=(8, 8))

plt.title("Pie Chart of Vehicle Class - Bad")

plt.ylabel("")

plt.show()

pIYBAFwlfcWAFjDkAAB14-989Sk717.png

圖32

pIYBAFwlfcWATZGAAABgBcRabjc767.png

圖32-2

33 樹形圖 (Treemap)

樹形圖類似于餅圖,它可以更好地完成工作而不會誤導每個組的貢獻。

(『Python數據之道』注:需要安裝 squarify 庫)

# pip install squarify

import squarify

# Import Data

df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Prepare Data

df = df_raw.groupby('class').size().reset_index(name='counts')

labels = df.apply(lambda x: str(x[0]) + " (" + str(x[1]) + ")", axis=1)

sizes = df['counts'].values.tolist()

colors = [plt.cm.Spectral(i/float(len(labels))) for i in range(len(labels))]

# Draw Plot

plt.figure(figsize=(12,8), dpi= 80)

squarify.plot(sizes=sizes, label=labels, color=colors, alpha=.8)

# Decorate

plt.title('Treemap of Vechile Class')

plt.axis('off')

plt.show()

pIYBAFwlfcWAOjKoAABCheEWLN0869.png

圖33

34 條形圖 (Bar Chart)

條形圖是基于計數或任何給定指標可視化項目的經典方式。 在下面的圖表中,我為每個項目使用了不同的顏色,但您通常可能希望為所有項目選擇一種顏色,除非您按組對其進行著色。 顏色名稱存儲在下面代碼中的all_colors中。 您可以通過在plt.plot()中設置顏色參數來更改條的顏色。

import random

# Import Data

df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")

# Prepare Data

df = df_raw.groupby('manufacturer').size().reset_index(name='counts')

n = df['manufacturer'].unique().__len__()+1

all_colors = list(plt.cm.colors.cnames.keys())

random.seed(100)

c = random.choices(all_colors, k=n)

# Plot Bars

plt.figure(figsize=(16,10), dpi= 80)

plt.bar(df['manufacturer'], df['counts'], color=c, width=.5)

for i, val in enumerate(df['counts'].values):

plt.text(i, val, float(val), horizontalalignment='center', verticalalignment='bottom', fontdict={'fontweight':500, 'size':12})

# Decoration

plt.gca().set_xticklabels(df['manufacturer'], rotation=60, horizontalalignment= 'right')

plt.title("Number of Vehicles by Manaufacturers", fontsize=22)

plt.ylabel('# Vehicles')

plt.ylim(0, 45)

plt.show()

pIYBAFwlfcaAA8sPAACul5wZ6o0959.png

圖34

六、變化 (Change)

35 時間序列圖 (Time Series Plot)

時間序列圖用于顯示給定度量隨時間變化的方式。 在這里,您可以看到 1949 年至 1969 年間航空客運量的變化情況。

# Import Data

df = pd.read_csv('https://github.com/selva86/datasets/raw/master/AirPassengers.csv')

# Draw Plot

plt.figure(figsize=(16,10), dpi= 80)

plt.plot('date', 'traffic', data=df, color='tab:red')

# Decoration

plt.ylim(50, 750)

xtick_location = df.index.tolist()[::12]

xtick_labels = [x[-4:] for x in df.date.tolist()[::12]]

plt.xticks(ticks=xtick_location, labels=xtick_labels, rotation=0, fontsize=12, horizontalalignment='center', alpha=.7)

plt.yticks(fontsize=12, alpha=.7)

plt.title("Air Passengers Traffic (1949 - 1969)", fontsize=22)

plt.grid(axis='both', alpha=.3)

# Remove borders

plt.gca().spines["top"].set_alpha(0.0)

plt.gca().spines["bottom"].set_alpha(0.3)

plt.gca().spines["right"].set_alpha(0.0)

plt.gca().spines["left"].set_alpha(0.3)

plt.show()

pIYBAFwlfceAH4BPAAChBS5Wym8263.png

圖35

36 帶波峰波谷標記的時序圖 (Time Series with Peaks and Troughs Annotated)

下面的時間序列繪制了所有峰值和低谷,并注釋了所選特殊事件的發生。

pIYBAFwlfciAJKpUAADhBtS4z2g978.png

圖36

37 自相關和部分自相關圖 (Autocorrelation (ACF) and Partial Autocorrelation (PACF) Plot)

自相關圖(ACF 圖)顯示時間序列與其自身滯后的相關性。 每條垂直線(在自相關圖上)表示系列與滯后 0 之間的滯后之間的相關性。圖中的藍色陰影區域是顯著性水平。 那些位于藍線之上的滯后是顯著的滯后。

那么如何解讀呢?

對于空乘旅客,我們看到多達 14 個滯后跨越藍線,因此非常重要。 這意味著,14 年前的航空旅客交通量對今天的交通狀況有影響。

PACF 在另一方面顯示了任何給定滯后(時間序列)與當前序列的自相關,但是刪除了滯后的貢獻。

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# Import Data

df = pd.read_csv('https://github.com/selva86/datasets/raw/master/AirPassengers.csv')

# Draw Plot

fig, (ax1, ax2) = plt.subplots(1, 2,figsize=(16,6), dpi= 80)

plot_acf(df.traffic.tolist(), ax=ax1, lags=50)

plot_pacf(df.traffic.tolist(), ax=ax2, lags=20)

# Decorate

# lighten the borders

ax1.spines["top"].set_alpha(.3); ax2.spines["top"].set_alpha(.3)

ax1.spines["bottom"].set_alpha(.3); ax2.spines["bottom"].set_alpha(.3)

ax1.spines["right"].set_alpha(.3); ax2.spines["right"].set_alpha(.3)

ax1.spines["left"].set_alpha(.3); ax2.spines["left"].set_alpha(.3)

# font size of tick labels

ax1.tick_params(axis='both', labelsize=12)

ax2.tick_params(axis='both', labelsize=12)

plt.show()

pIYBAFwlfciAGrhPAAB4cIuxLdA343.png

圖37

38 交叉相關圖 (Cross Correlation plot)

交叉相關圖顯示了兩個時間序列相互之間的滯后。

pIYBAFwlfcmAMF4iAAArsqaFBvQ236.png

圖38

39 時間序列分解圖 (Time Series Decomposition Plot)

時間序列分解圖顯示時間序列分解為趨勢,季節和殘差分量。

from statsmodels.tsa.seasonal import seasonal_decompose

from dateutil.parser import parse

# Import Data

df = pd.read_csv('https://github.com/selva86/datasets/raw/master/AirPassengers.csv')

dates = pd.DatetimeIndex([parse(d).strftime('%Y-%m-01') for d in df['date']])

df.set_index(dates, inplace=True)

# Decompose

result = seasonal_decompose(df['traffic'], model='multiplicative')

# Plot

plt.rcParams.update({'figure.figsize': (10,10)})

result.plot().suptitle('Time Series Decomposition of Air Passengers')

plt.show()

pIYBAFwlfcmAeLMSAADaUuCwweE840.png

圖39

40 多個時間序列 (Multiple Time Series)

您可以繪制多個時間序列,在同一圖表上測量相同的值,如下所示。

pIYBAFwlfcqAWU6NAADOZIbV1zk250.png

圖40

41 使用輔助 Y 軸來繪制不同范圍的圖形 (Plotting with different scales using secondary Y axis)

如果要顯示在同一時間點測量兩個不同數量的兩個時間序列,則可以在右側的輔助Y軸上再繪制第二個系列。

pIYBAFwlfcuAXyJ5AAD33ssNB98329.png

圖41

42 帶有誤差帶的時間序列 (Time Series with Error Bands)

如果您有一個時間序列數據集,每個時間點(日期/時間戳)有多個觀測值,則可以構建帶有誤差帶的時間序列。 您可以在下面看到一些基于每天不同時間訂單的示例。 另一個關于 45 天持續到達的訂單數量的例子。

在該方法中,訂單數量的平均值由白線表示。 并且計算 95% 置信區間并圍繞均值繪制。

pIYBAFwlfcuAa68hAACjPjvptXk831.png

圖42

圖42-2

43 堆積面積圖 (Stacked Area Chart)

堆積面積圖可以直觀地顯示多個時間序列的貢獻程度,因此很容易相互比較。

pIYBAFwlfc2AVEu2AADrsJzaUtM460.png

圖43

44 未堆積的面積圖 (Area Chart UnStacked)

未堆積面積圖用于可視化兩個或更多個系列相對于彼此的進度(起伏)。 在下面的圖表中,您可以清楚地看到隨著失業中位數持續時間的增加,個人儲蓄率會下降。 未堆積面積圖表很好地展示了這種現象。

# Import Data

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/economics.csv")

# Prepare Data

x = df['date'].values.tolist()

y1 = df['psavert'].values.tolist()

y2 = df['uempmed'].values.tolist()

mycolors = ['tab:red', 'tab:blue', 'tab:green', 'tab:orange', 'tab:brown', 'tab:grey', 'tab:pink', 'tab:olive']

columns = ['psavert', 'uempmed']

# Draw Plot

fig, ax = plt.subplots(1, 1, figsize=(16,9), dpi= 80)

ax.fill_between(x, y1=y1, y2=0, label=columns[1], alpha=0.5, color=mycolors[1], linewidth=2)

ax.fill_between(x, y1=y2, y2=0, label=columns[0], alpha=0.5, color=mycolors[0], linewidth=2)

# Decorations

ax.set_title('Personal Savings Rate vs Median Duration of Unemployment', fontsize=18)

ax.set(ylim=[0, 30])

ax.legend(loc='best', fontsize=12)

plt.xticks(x[::50], fontsize=10, horizontalalignment='center')

plt.yticks(np.arange(2.5, 30.0, 2.5), fontsize=10)

plt.xlim(-10, x[-1])

# Draw Tick lines

for y in np.arange(2.5, 30.0, 2.5):

plt.hlines(y, xmin=0, xmax=len(x), colors='black', alpha=0.3, linestyles="--", lw=0.5)

# Lighten borders

plt.gca().spines["top"].set_alpha(0)

plt.gca().spines["bottom"].set_alpha(.3)

plt.gca().spines["right"].set_alpha(0)

plt.gca().spines["left"].set_alpha(.3)

plt.show()

pIYBAFwlfc2Abho1AADKO290EHc878.png

圖44

45 日歷熱力圖 (Calendar Heat Map)

與時間序列相比,日歷地圖是可視化基于時間的數據的備選和不太優選的選項。 雖然可以在視覺上吸引人,但數值并不十分明顯。 然而,它可以很好地描繪極端值和假日效果。

(『Python數據之道』注:需要安裝 calmap 庫)

import matplotlib as mpl

# pip install calmap

# Python數據之道 備注

import calmap

# Import Data

df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/yahoo.csv", parse_dates=['date'])

df.set_index('date', inplace=True)

# Plot

plt.figure(figsize=(16,10), dpi= 80)

calmap.calendarplot(df['2014']['VIX.Close'], fig_kws={'figsize': (16,10)}, yearlabel_kws={'color':'black', 'fontsize':14}, subplot_kws={'title':'Yahoo Stock Prices'})

plt.show()

pIYBAFwlfc6AZ0RhAAB08d0oamU063.png

圖45

46 季節圖 (Seasonal Plot)

季節圖可用于比較上一季中同一天(年/月/周等)的時間序列。

pIYBAFwlfc6AJjhRAAD7BxKV67k666.png

圖46

七、分組 (Groups)

47 樹狀圖 (Dendrogram)

樹形圖基于給定的距離度量將相似的點組合在一起,并基于點的相似性將它們組織在樹狀鏈接中。

import scipy.cluster.hierarchy as shc

# Import Data

df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv')

# Plot

plt.figure(figsize=(16, 10), dpi= 80)

plt.title("USArrests Dendograms", fontsize=22)

dend = shc.dendrogram(shc.linkage(df[['Murder', 'Assault', 'UrbanPop', 'Rape']], method='ward'), labels=df.State.values, color_threshold=100)

plt.xticks(fontsize=12)

plt.show()

pIYBAFwlfc-AR3OqAADhL42bdQg407.png

圖47

48 簇狀圖 (Cluster Plot)

簇狀圖 (Cluster Plot)可用于劃分屬于同一群集的點。 下面是根據 USArrests 數據集將美國各州分為 5 組的代表性示例。 此圖使用“謀殺”和“攻擊”列作為 X 和 Y 軸。 或者,您可以將第一個到主要組件用作 X 軸和 Y 軸。

from sklearn.cluster importAgglomerativeClustering

from scipy.spatial importConvexHull

# Import Data

df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv')

# Agglomerative Clustering

cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')

cluster.fit_predict(df[['Murder', 'Assault', 'UrbanPop', 'Rape']])

# Plot

plt.figure(figsize=(14, 10), dpi= 80)

plt.scatter(df.iloc[:,0], df.iloc[:,1], c=cluster.labels_, cmap='tab10')

# Encircle

def encircle(x,y, ax=None, **kw):

ifnot ax: ax=plt.gca()

p = np.c_[x,y]

hull = ConvexHull(p)

poly = plt.Polygon(p[hull.vertices,:], **kw)

ax.add_patch(poly)

# Draw polygon surrounding vertices

encircle(df.loc[cluster.labels_ == 0, 'Murder'], df.loc[cluster.labels_ == 0, 'Assault'], ec="k", fc="gold", alpha=0.2, linewidth=0)

encircle(df.loc[cluster.labels_ == 1, 'Murder'], df.loc[cluster.labels_ == 1, 'Assault'], ec="k", fc="tab:blue", alpha=0.2, linewidth=0)

encircle(df.loc[cluster.labels_ == 2, 'Murder'], df.loc[cluster.labels_ == 2, 'Assault'], ec="k", fc="tab:red", alpha=0.2, linewidth=0)

encircle(df.loc[cluster.labels_ == 3, 'Murder'], df.loc[cluster.labels_ == 3, 'Assault'], ec="k", fc="tab:green", alpha=0.2, linewidth=0)

encircle(df.loc[cluster.labels_ == 4, 'Murder'], df.loc[cluster.labels_ == 4, 'Assault'], ec="k", fc="tab:orange", alpha=0.2, linewidth=0)

# Decorations

plt.xlabel('Murder'); plt.xticks(fontsize=12)

plt.ylabel('Assault'); plt.yticks(fontsize=12)

plt.title('Agglomerative Clustering of USArrests (5 Groups)', fontsize=22)

plt.show()

pIYBAFwlfdCALVUWAAB2M8_pgS0042.png

圖48

49 安德魯斯曲線 (Andrews Curve)

安德魯斯曲線有助于可視化是否存在基于給定分組的數字特征的固有分組。 如果要素(數據集中的列)無法區分組(cyl),那么這些線將不會很好地隔離,如下所示。

from pandas.plotting import andrews_curves

# Import

df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")

df.drop(['cars', 'carname'], axis=1, inplace=True)

# Plot

plt.figure(figsize=(12,9), dpi= 80)

andrews_curves(df, 'cyl', colormap='Set1')

# Lighten borders

plt.gca().spines["top"].set_alpha(0)

plt.gca().spines["bottom"].set_alpha(.3)

plt.gca().spines["right"].set_alpha(0)

plt.gca().spines["left"].set_alpha(.3)

plt.title('Andrews Curves of mtcars', fontsize=22)

plt.xlim(-3,3)

plt.grid(alpha=0.3)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.show()

pIYBAFwlfdCADs8SAADyVghPVvE384.png

圖49

50 平行坐標 (Parallel Coordinates)

平行坐標有助于可視化特征是否有助于有效地隔離組。 如果實現隔離,則該特征可能在預測該組時非常有用。

from pandas.plotting import parallel_coordinates

# Import Data

df_final = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/diamonds_filter.csv")

# Plot

plt.figure(figsize=(12,9), dpi= 80)

parallel_coordinates(df_final, 'cut', colormap='Dark2')

# Lighten borders

plt.gca().spines["top"].set_alpha(0)

plt.gca().spines["bottom"].set_alpha(.3)

plt.gca().spines["right"].set_alpha(0)

plt.gca().spines["left"].set_alpha(.3)

plt.title('Parallel Coordinated of Diamonds', fontsize=22)

plt.grid(alpha=0.3)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.show()

pIYBAFwlfdGAe9ZFAACY_DmKxHk058.png

圖50

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 代碼
    +關注

    關注

    30

    文章

    4818

    瀏覽量

    68874
  • 可視化
    +關注

    關注

    1

    文章

    1200

    瀏覽量

    21003
  • 數據分析
    +關注

    關注

    2

    文章

    1459

    瀏覽量

    34106

原文標題:深度好文|Matplotlib可視化最有價值的50個圖表(附完整Python源代碼)

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    七款經久不衰的數據可視化工具!

    :對于年收益低于1億的中小型企業來說采購成本較高,但可以考慮引入FineBI的Saas版本九數云 2. Tableau 優點:強大的數據可視化功能,支持多種數據源連接和大數據分析
    發表于 01-19 15:24

    數據可視化之Python-matplotlib概述

    數據可視化(二):Python-matplotlib
    發表于 07-22 14:58

    從使用效果來看,數據可視化工具離不開數據中臺嗎?

    地總結,從數據可視化工具離不開數據中臺。1、從智能分析效率看,數據中臺能讓企業數據
    發表于 05-12 14:14

    為更快讀懂報表,我們將數據可視化

    常用圖表的基礎上,開發數十種高級數據可視化圖表,同時還賦予這些圖表聯動鉆取功能,讓瀏覽者一眼看懂數據
    發表于 06-05 17:21

    只有報表直觀了,不能算真正的數據可視化

    數據鏈的直觀?主要依靠三方面的合力作用,分別是可視化圖表、智能數據分析功能、數據中心(
    發表于 07-01 17:20

    BI數據分析軟件使用指南

    存貯。二、數據可視化分析報表制作一鍵新建報表、應用可視化圖表后,通過拖拉拽就能自定義可視化圖表
    發表于 01-04 11:00

    一般圖表做不了的分析,BI數據可視化圖表可以

    。 OurwayBI數據可視化報表 OurwayBI數據可視化報表上面兩張數據可視化報表截圖則是
    發表于 01-15 10:22

    怎么做以中國地圖為底圖的數據可視化報表?

    就該地的銷售數據進行分析可視化展示,讓瀏覽者能立即了解該地區的具體銷售情況。浮窗效果浮窗效果我們也是常見的,比如說當鼠標經過某地時,就會在頁面上出現一浮窗,上面可以是一
    發表于 07-06 16:07

    什么樣的數據分析軟件能讓全員自助可視化分析更絲滑?

    的大數據時代,數據可視化分析的效率、靈活自助性都將極大地影響企業的經營決策。在動則千萬級、過億級的大數據量下,企業更需要一能夠智能且高效、
    發表于 09-22 10:04

    新手必看:數據可視化圖表的選擇技巧

    立即生效BI數據分析軟件上的數據可視化圖表都是經過提前預設,打造成一個個點擊立即生效的圖表模板。
    發表于 09-29 09:35

    SpeedBI數據可視化工具:瀏覽器上做分析

    SpeedBI數據分析云是一種在瀏覽器上進行數據可視化分析的工具,它能夠將數據可視化的形式呈現出來,并支持多種
    發表于 08-22 10:55

    財務數據分析?奧威BI數據可視化工具很擅長

    的智能財務指標計算功能,還擁有一套標準、系統的財務數據分析方案,無需測試,下載即可用! 奧威BI工具+智能財務方案:輕松完成智能財務數據可視化分
    發表于 08-29 09:44

    可視化策略的數據分析

    研究者采用可視化策略(即平行坐標)的數據分析方法,更好地展示了多維材料數據,可以更好地識別不同屬性之間的有用關系。
    的頭像 發表于 04-27 09:22 ?4465次閱讀
    <b class='flag-5'>可視化</b>策略的<b class='flag-5'>數據分析</b>

    用標準數據分析方案做數據可視化更省成本

    標準數據分析方案是以豐富經驗為基礎,針對數據分析共性需求進行設置的數據分析方案。在數據可視化工具上直接使用標準
    發表于 10-13 14:26 ?455次閱讀

    使用Python來收集、處理和可視化人口數據

    可視化: pandas:一提供高性能、易用的數據結構和數據分析工具的庫。 requests:一簡潔、優雅的HTTP庫,用于發送網絡請求
    的頭像 發表于 06-21 17:08 ?1448次閱讀
    使用Python來收集、處理和<b class='flag-5'>可視化</b>人口<b class='flag-5'>數據</b>
    主站蜘蛛池模板: 沙发上小泬12P| 亚洲精品网址| 青青草原国产在线观看| 男人J进入女人P免费狂躁| 免费毛片在线播放| 欧美xxxxx18| 日本无吗高清| 十分钟免费看完整视频| 亚州精品永久观看视频| 亚洲熟伦熟女专区| 一个人在线观看视频| 24小时日本在线| RUNAWAY韩国动漫免费官网版| 草莓国产视频免费观看| 国产精品久久久久婷婷五月色 | 老司机午夜影院味味| 暖暖视频免费观看高清完整版| 人人妻免费线| 小雪奶水涨翁工帮吸的推荐语录 | 狠狠鲁快播| 毛片在线播放网址| 日本熟妇乱妇熟色A片蜜桃亚洲| 午夜伦理网| 益日韩欧群交P片内射中文| 99久久99久久精品| 国产MD视频一区二区三区| 狠狠色狠狠色88综合日日91| 毛片手机在线看| 忘忧草日本在线WWW日本| 一级淫片bbbxxx| 被男按摩师添的好爽在线直播| 国产精品亚洲专区在线播放| 久久天堂视频| 日韩精品免费在线观看| 亚洲人成网站在线观看90影院| 91热久久免费频精品99欧美| 国产成人免费a在线资源| 久久视频这有精品63在线国产| 日韩在线看片中文字幕不卡| 亚洲永久精品ww47app| jizzxxxx18中国内地|