色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

手把手教你在windows7上安裝tensorflow-gpu開發環境

lviY_AI_shequ ? 來源:未知 ? 作者:李倩 ? 2018-07-16 14:44 ? 次閱讀

手把手教你在windows7上安裝tensorflow-gpu開發環境

1、FM背景

在計算廣告和推薦系統中,CTR預估(click-through rate)是非常重要的一個環節,判斷一個商品的是否進行推薦需要根據CTR預估的點擊率來進行。在進行CTR預估時,除了單特征外,往往要對特征進行組合。對于特征組合來說,業界現在通用的做法主要有兩大類:FM系列與Tree系列。今天,我們就來講講FM算法

2、one-hot編碼帶來的問題

FM(Factorization Machine)主要是為了解決數據稀疏的情況下,特征怎樣組合的問題。已一個廣告分類的問題為例,根據用戶與廣告位的一些特征,來預測用戶是否會點擊廣告。數據如下:(本例來自美團技術團隊分享的paper)

clicked是分類值,表明用戶有沒有點擊該廣告。1表示點擊,0表示未點擊。而country,day,ad_type則是對應的特征。對于這種categorical特征,一般都是進行one-hot編碼處理。

將上面的數據進行one-hot編碼以后,就變成了下面這樣 :

因為是categorical特征,所以經過one-hot編碼以后,不可避免的樣本的數據就變得很稀疏。舉個非常簡單的例子,假設淘寶或者京東上的item為100萬,如果對item這個維度進行one-hot編碼,光這一個維度數據的稀疏度就是百萬分之一。由此可見,數據的稀疏性,是我們在實際應用場景中面臨的一個非常常見的挑戰與問題。

one-hot編碼帶來的另一個問題是特征空間變大。同樣以上面淘寶上的item為例,將item進行one-hot編碼以后,樣本空間有一個categorical變為了百萬維的數值特征,特征空間一下子暴增一百萬。所以大廠動不動上億維度,就是這么來的。

3、對特征進行組合

普通的線性模型,我們都是將各個特征獨立考慮的,并沒有考慮到特征與特征之間的相互關系。但實際上,大量的特征之間是有關聯的。最簡單的以電商為例,一般女性用戶看化妝品服裝之類的廣告比較多,而男性更青睞各種球類裝備。那很明顯,女性這個特征與化妝品類服裝類商品有很大的關聯性,男性這個特征與球類裝備的關聯性更為密切。如果我們能將這些有關聯的特征找出來,顯然是很有意義的。

一般的線性模型為:

從上面的式子很容易看出,一般的線性模型壓根沒有考慮特征間的關聯。為了表述特征間的相關性,我們采用多項式模型。在多項式模型中,特征xi與xj的組合用xixj表示。為了簡單起見,我們討論二階多項式模型。具體的模型表達式如下:

上式中,n表示樣本的特征數量,xi表示第i個特征。與線性模型相比,FM的模型就多了后面特征組合的部分。

4、FM求解

從上面的式子可以很容易看出,組合部分的特征相關參數共有n(n?1)/2個。但是如第二部分所分析,在數據很稀疏的情況下,滿足xi,xj都不為0的情況非常少,這樣將導致ωij無法通過訓練得出。

為了求出ωij,我們對每一個特征分量xi引入輔助向量Vi=(vi1,vi2,?,vik)。然后,利用vivj^T對ωij進行求解。

那么ωij組成的矩陣可以表示為:

那么,如何求解vi和vj呢?主要采用了公式:

具體過程如下:

上面的式子中有同學曾經問我第一步是怎么推導的,其實也不難,看下面的手寫過程(大伙可不要嫌棄字丑喲)

經過這樣的分解之后,我們就可以通過隨機梯度下降SGD進行求解:

5、tensorflow代碼詳解

代碼參考地址:https://github.com/babakx/fm_tensorflow/blob/master/fm_tensorflow.ipynb上面的代碼使用的是python2編碼,在python3下運行會出錯,所以如果大家使用的是python3的話,可以參考我寫的,其實就是修復了幾個bug啦,哈哈。我的github地址:https://github.com/princewen/tensorflow_practice/tree/master/recommendation-FM-demo。

本文使用的數據是MovieLens100k Datase,數據包括四列,分別是用戶ID,電影ID,打分,時間。

輸入變換

要使用FM模型,我們首先要將數據處理成一個矩陣,矩陣的大小是用戶數 * 電影數。如何根據現有的數據進行處理呢?使用的是scipy.sparse中的csr.csr_matrix,理解這個函數真的費了不少功夫呢,不過還是在下面博客(https://blog.csdn.net/u012871493/article/details/51593451)的幫助下理解了函數的原理。盜用博客中的一張圖來幫助大家理解這個函數的輸入:

函數形式如下:

csr_matrix((data, indices, indptr)

可以看到,函數接收三個參數,第一個參數是數值,第二個參數是每個數對應的列號,第三個參數是每行的起始的偏移量,舉上圖的例子來說,第0行的起始偏移是0,第0行有2個非0值,因此第一行的起始偏移是2,第1行有兩個非0值,因此第二行的起始偏移是4,依次類推。

下面的代碼是如何將原始的文件輸入轉換成我們的矩陣:

def vectorize_dic(dic,ix=None,p=None,n=0,g=0): """ dic -- dictionary of feature lists. Keys are the name of features ix -- index generator (default None) p -- dimension of featrure space (number of columns in the sparse matrix) (default None) """ if ix==None: ix = dict() nz = n * g col_ix = np.empty(nz,dtype = int) i = 0 for k,lis in dic.items(): for t in range(len(lis)): ix[str(lis[t]) + str(k)] = ix.get(str(lis[t]) + str(k),0) + 1 col_ix[i+t*g] = ix[str(lis[t]) + str(k)] i += 1 row_ix = np.repeat(np.arange(0,n),g) data = np.ones(nz) if p == None: p = len(ix) ixx = np.where(col_ix < p) ? ?return csr.csr_matrix((data[ixx],(row_ix[ixx],col_ix[ixx])),shape=(n,p)),ixcols = ['user','item','rating','timestamp']train = pd.read_csv('data/ua.base',delimiter=' ',names = cols)test = pd.read_csv('data/ua.test',delimiter=' ',names = cols)x_train,ix = vectorize_dic({'users':train['user'].values, ? ? ? ? ? ? ? ? ? ? ? ? ? ?'items':train['item'].values},n=len(train.index),g=2)x_test,ix = vectorize_dic({'users':test['user'].values, ? ? ? ? ? ? ? ? ? ? ? ? ? 'items':test['item'].values},ix,x_train.shape[1],n=len(test.index),g=2)y_train = train['rating'].valuesy_test = test['rating'].valuesx_train = x_train.todense()x_test = x_test.todense()

如果不做處理,函數返回的矩陣是按如下的格式保存的:

使用todense變換后,變成如下樣式:

估計值計算

得到我們的輸入之后,我們使用tensorflow來設計我們的模型,其實很簡單啦,我們模型的估計值由兩部分構成,原始的可以理解為線性回歸的部分,以及交叉特征的部分,交叉特征直接使用我們最后推導的形式即可,再回顧一遍:

因此,我們需要定義三個placeholder,分別是輸入的x,輸入的y,以及我們的 用戶數*電影數大小的待學習的fm矩陣:

n,p = x_train.shapek = 10x = tf.placeholder('float',[None,p])y = tf.placeholder('float',[None,1])w0 = tf.Variable(tf.zeros([1]))w = tf.Variable(tf.zeros([p]))v = tf.Variable(tf.random_normal([k,p],mean=0,stddev=0.01))#y_hat = tf.Variable(tf.zeros([n,1]))linear_terms = tf.add(w0,tf.reduce_sum(tf.multiply(w,x),1,keep_dims=True)) # n * 1pair_interactions = 0.5 * tf.reduce_sum( tf.subtract( tf.pow( tf.matmul(x,tf.transpose(v)),2), tf.matmul(tf.pow(x,2),tf.transpose(tf.pow(v,2))) ),axis = 1 , keep_dims=True)y_hat = tf.add(linear_terms,pair_interactions)

定義損失函數

這里我們定義的損失函數除了平方損失外,還加了l2正則項,并使用梯度下降法進行參數的更新:

lambda_w = tf.constant(0.001,name='lambda_w')lambda_v = tf.constant(0.001,name='lambda_v')l2_norm = tf.reduce_sum( tf.add( tf.multiply(lambda_w,tf.pow(w,2)), tf.multiply(lambda_v,tf.pow(v,2)) ))error = tf.reduce_mean(tf.square(y-y_hat))loss = tf.add(error,l2_norm)train_op = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(loss)

模型訓練接下來就是訓練啦,這段代碼比較好理解:

epochs = 10batch_size = 1000# Launch the graphinit = tf.global_variables_initializer()with tf.Session() as sess: sess.run(init) for epoch in tqdm(range(epochs), unit='epoch'): perm = np.random.permutation(x_train.shape[0]) # iterate over batches for bX, bY in batcher(x_train[perm], y_train[perm], batch_size): _,t = sess.run([train_op,loss], feed_dict={x: bX.reshape(-1, p), y: bY.reshape(-1, 1)}) print(t) errors = [] for bX, bY in batcher(x_test, y_test): errors.append(sess.run(error, feed_dict={x: bX.reshape(-1, p), y: bY.reshape(-1, 1)})) print(errors) RMSE = np.sqrt(np.array(errors).mean()) print (RMSE)

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • WINDOWS
    +關注

    關注

    4

    文章

    3551

    瀏覽量

    88858
  • 編碼
    +關注

    關注

    6

    文章

    946

    瀏覽量

    54869
  • 數據處理
    +關注

    關注

    0

    文章

    605

    瀏覽量

    28592

原文標題:推薦系統遇上深度學習(一)--FM模型理論和實踐

文章出處:【微信號:AI_shequ,微信公眾號:人工智能愛好者社區】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    深度學習框架TensorFlow&TensorFlow-GPU詳解

    TensorFlow&TensorFlow-GPU:深度學習框架TensorFlow&TensorFlow-GPU的簡介、安裝、使用方法詳細
    發表于 12-25 17:21

    tensorflow-gpu安裝報錯的修改

    tensorflow-gpu安裝遇到的一些問題解決
    發表于 05-20 10:25

    UG5.0安裝視頻教程(手把手教你如何安裝)

    UG5.0安裝視頻教程,手把手教你如何安裝,怎么樣解決安裝中遇到的問題。
    發表于 02-06 11:34 ?86次下載
    UG5.0<b class='flag-5'>安裝</b>視頻教程(<b class='flag-5'>手把手</b><b class='flag-5'>教你</b>如何<b class='flag-5'>安裝</b>)

    手把手教你寫批處理-批處理的介紹

    手把手教你寫批處理-批處理的介紹
    發表于 10-25 15:02 ?69次下載

    美女手把手教你如何裝機()

    美女手把手教你如何裝機() 提到AMD,想必大家都想到C/P值超高、死忠粉絲超多的平臺吧!最近一年來,玩家的
    發表于 01-27 11:11 ?1607次閱讀

    美女手把手教你如何裝機(中)

    美女手把手教你如何裝機(中) 再來是硬碟的部份,這款機殼還不錯,可以旋轉支架~
    發表于 01-27 11:14 ?1472次閱讀

    美女手把手教你如何裝機(下)

    美女手把手教你如何裝機(下) 接著下來就是今天的重頭戲,開核蘿!~
    發表于 01-27 11:16 ?2925次閱讀

    手把手教你安裝Quartus II

    本章手把手把教你如何安裝 Quartus II 軟件 ,并將它激活 。此外 還有USB -Blaster下載器的驅動安裝步驟 。
    發表于 09-18 14:55 ?9次下載

    手把手教你如何開始DSP編程

    手把手教你如何開始DSP編程。
    發表于 04-09 11:54 ?12次下載
    <b class='flag-5'>手把手</b><b class='flag-5'>教你</b>如何開始DSP編程

    手把手教你如何安裝機械硬盤和分區

    手把手教你如何安裝機械硬盤與分區,看了你就知道這是多么簡單!一起來試試看吧~
    的頭像 發表于 03-05 17:19 ?14.4w次閱讀

    手把手教你學LabVIEW視覺設計

    手把手教你學LabVIEW視覺設計手把手教你學LabVIEW視覺設計手把手教你學LabVIEW視
    發表于 03-06 01:41 ?3145次閱讀

    手把手教你玩USB開發資料匯總第二部分

    手把手教你開發—USB開發板資料,B站有視頻教程
    發表于 09-09 15:50 ?22次下載

    《嵌入式 - STM32開發指南》手把手教你搭建STM32開發環境 [Windows版 - 3]

    《嵌入式 - STM32開發指南》手把手教你搭建STM32開發環境 [Windows版 - 1]
    發表于 12-06 09:36 ?0次下載
    《嵌入式 - STM32<b class='flag-5'>開發</b>指南》<b class='flag-5'>手把手</b><b class='flag-5'>教你</b>搭建STM32<b class='flag-5'>開發</b><b class='flag-5'>環境</b> [<b class='flag-5'>Windows</b>版 - 3]

    《嵌入式 - STM32開發指南》手把手教你搭建STM32開發環境 [Linux版 - 3]

    《嵌入式 - STM32開發指南》手把手教你搭建STM32開發環境 [Linux版 - 1]《嵌入式 - STM32
    發表于 12-06 09:36 ?0次下載
    《嵌入式 - STM32<b class='flag-5'>開發</b>指南》<b class='flag-5'>手把手</b><b class='flag-5'>教你</b>搭建STM32<b class='flag-5'>開發</b><b class='flag-5'>環境</b> [Linux版 - 3]

    手把手教你學FPGA仿真

    電子發燒友網站提供《手把手教你學FPGA仿真.pdf》資料免費下載
    發表于 10-19 09:17 ?2次下載
    <b class='flag-5'>手把手</b><b class='flag-5'>教你</b>學FPGA仿真
    主站蜘蛛池模板: 她也色在线视频站| 天堂tv免费tv在线tv香蕉| 色人阁影视| 花蝴蝶在线观看免费8 | 麻豆精品2021最新| 日韩人妻少妇一区二区三区| 99久久精品免费看国产一区二区三区| 大中国免费视频大全在线观看| 蜜桃成熟时2在线观看完整版hd| 色柚视频网站ww色| 成人AV精品视频| 人人插人人射| 超碰最新网站| 肉肉描写很细致的黄文| 俄罗斯12一15处交| 乌克兰18性hd| 国产在线精品视频免费观看| 欧美亚洲天堂网| 一本道高清不卡v免费费| 被黑人做的白浆直流| 国产亚洲福利精品一区| 男人就爱吃这套下载| 99热久久精品国产一区二区| 欧美日韩一区二区三区四区| 成 人 动漫3d 在线看| 忘忧草在线| 幻女FREE性俄罗斯学生| 坠落的丝袜美人妻| 鸡鸡插屁股| 在线观看免费视频播放视频| 嫩小xxxxbbbb| 国产精品JK白丝AV网站| 日本久久和电影| 最近中文字幕完整版免费| 欧美末成年videos在线| 国产电影无码午夜在线播放| 亚洲色欲国产免费视频| 国产午夜精品一区理论片飘花| 亚洲精品无码久久久久A片| 国产乱对白精彩在线播放| 亚洲中文在线偷拍|