關鍵詞:5G新材料,高導熱絕緣低介電材料,氮化硼高端材料,國產替代
導語:5G時代巨大數(shù)據(jù)流量對于通訊終端的芯片、天線等部件提出了更高的要求,器件功耗大幅提升的同時,引起了這些部位發(fā)熱量的急劇增加。BN氮化硼散熱膜是當前5G射頻芯片、毫米波天線、AI、物聯(lián)網(wǎng)等領域最為有效的散熱材料,具有不可替代性。
致力于解決當前我國電子封裝及熱管理領域面臨的瓶頸技術問題,建立了國際先進的熱管理解決方案及相關材料生產技術,是國內低維材料技術領域頂尖的創(chuàng)新型研發(fā)團隊。本產品是國內首創(chuàng)自主研發(fā)的高質量二維氮化硼納米片,成功制備了大面積、厚度可控的二維氮化硼散熱膜,具有透電磁波、高導熱、高柔性、低介電系數(shù)、低介電損耗等多種優(yōu)異特性,解決了當前我國電子封裝及熱管理領域面臨的“卡脖子”問題,擁有國際先進的熱管理TIM解決方案及相關材料生產技術,是國內低維材料技術領域頂尖的創(chuàng)新型高科技產品。
產品的應用方向為5G通訊絕緣熱管理,主要目標市場可分為終端設備,智能工業(yè),及新能源汽車三大板塊。5G技術是近年來最受矚目的關鍵科技,也是國內外重點發(fā)展的核心產業(yè)之一。隨著5G商用,工業(yè)4.0、智慧城市、無人駕駛等科技建設的推進,該項目已經初步形成了萬億的市場規(guī)模,并持續(xù)快速發(fā)展。5G 手機、基站等主要設備較 4G 手機、基站在計算量方面有著顯著提升,因此其功耗更大,從而導致散熱需求更大。而如果散熱效果不佳,5G 設備處理器或天線單元溫度過高,則可能導致性能下降、損耗提升,不利于發(fā)揮 5G 設備的性能優(yōu)勢。因此,傳統(tǒng)散熱材料及方案面臨較大的挑戰(zhàn),而新型散熱材料及方案則迎來嶄新的發(fā)展機遇。
5G 手機的性能升級、功耗上升、機身非金屬化趨勢帶來了散熱新需求。一方面,伴隨著智能手機由 4G 向 5G 升級,芯片、攝像、頻段、帶寬、電池等模塊的功能大幅提升,對散熱提出了更高的要求。另一方面,5G 內部結構設計更為緊湊,機身向非金屬化演進,需額外散熱設計補償。超薄高導熱TIM材料內部填充用于熱傳導的介質,具有導熱系數(shù)高、厚度薄的特點,有利于分散手機內部熱量,實現(xiàn)內部結構空間熱量的有效分布,在5G 手機散熱市場的應用前景廣闊。
5G---移動通信產業(yè)的新發(fā)動機
一
5G移動通信產業(yè)的新發(fā)動機
什么是5G?
“5G”一詞通常用于指代第 5 代移動網(wǎng)絡。5G 是繼之前的標準(1G、2G、3G、4G 網(wǎng)絡)之后的最新全球無線標準,并為數(shù)據(jù)密集型應用提供更高的帶寬。除其他好處外,5G 有助于建立一個新的、更強大的網(wǎng)絡,該網(wǎng)絡能夠支持通常被稱為 IoT 或“物聯(lián)網(wǎng)”的設備爆炸式增長的連接——該網(wǎng)絡不僅可以連接人們通常使用的端點,還可以連接一系列新設備,包括各種家用物品和機器。公認的5G的優(yōu)勢是:
?具有更高可用性和容量的更可靠的網(wǎng)絡
?更高的峰值數(shù)據(jù)速度(多 Gbps)
?超低延遲
與前幾代網(wǎng)絡不同,5G 網(wǎng)絡利用在 26 GHz 至 40 GHz 范圍內運行的高頻波長(通常稱為毫米波)。由于干擾建筑物、樹木甚至雨等物體,在這些高頻下會遇到傳輸損耗,因此需要更高功率和更高效的電源。5G部署最初可能會以增強型移動寬帶應用為中心,滿足以人為中心的多媒體內容、服務和數(shù)據(jù)接入需求。增強型移動寬帶用例將包括全新的應用領域、性能提升的需求和日益無縫的用戶體驗,超越現(xiàn)有移動寬帶應用所支持的水平。
毫米波是5G的關鍵技術
毫米波通信是未來無線移動通信重要發(fā)展方向之一,目前已經在大規(guī)模天線技術、低比特量化ADC、低復雜度信道估計技術、功放非線性失真等關鍵技術上有了明顯研究進展。但是隨著新一代無線通信對無線寬帶通信網(wǎng)絡提出新的長距離、高移動、更大傳輸速率的軍用、民用特殊應用場景的需求,針對毫米波無線通信的理論研究與系統(tǒng)設計面臨重大挑戰(zhàn),開展面向長距離、高移動毫米波無線寬帶系統(tǒng)的基礎理論和關鍵技術研究,已經成為新一代寬帶移動通信最具潛力的研究方向之一。
毫米波的優(yōu)勢: 毫米波由于其頻率高、波長短,具有如下特點:
頻譜寬,配合各種多址復用技術的使用可以極大提升信道容量,適用于高速多媒體傳輸業(yè)務;可靠性高,較高的頻率使其受干擾很少,能較好抵抗雨水天氣的影響,提供穩(wěn)定的傳輸信道;方向性好,毫米波受空氣中各種懸浮顆粒物的吸收較大,使得傳輸波束較窄,增大了竊聽難度,適合短距離點對點通信;波長極短,所需的天線尺寸很小,易于在較小的空間內集成大規(guī)模天線陣。
毫米波的缺點:毫米波也有一個主要缺點,那就是不容易穿過建筑物或者障礙物,并且可以被葉子和雨水吸收。這也是為什么5G網(wǎng)絡將會采用小基站的方式來加強傳統(tǒng)的蜂窩塔。
什么是熱管理?
熱管理?顧名思義,就是對“熱“進行管理,英文是:Thermal Management。熱管理系統(tǒng)廣泛應用于國民經濟以及國防等各個領域,控制著系統(tǒng)中熱的分散、存儲與轉換。先進的熱管理材料構成了熱管理系統(tǒng)的物質基礎,而熱傳導率則是所有熱管理材料的核心技術指標。
導熱率,又稱導熱系數(shù),反映物質的熱傳導能力,按傅立葉定律(見熱傳導),其定義為單位溫度梯度(在1m長度內溫度降低1K)在單位時間內經單位導熱面所傳遞的熱量。熱導率大,表示物體是優(yōu)良的熱導體;而熱導率小的是熱的不良導體或為熱絕緣體。
5G手機以及硬件終端產品的小型化、集成化和多功能化,毫米波穿透力差,電子設備和許多其他高功率系統(tǒng)的性能和可靠性受到散熱問題的嚴重威脅。要解決這個問題,散熱材料必須在導熱性、厚度、靈活性和堅固性方面獲得更好的性能,以匹配散熱系統(tǒng)的復雜性和高度集成性。
氮化硼
氮化硼是由氮原子和硼原子所構成的晶體。化學組成為43.6%的硼和56.4%的氮,具有四種不同的變體:六方氮化硼(HBN)、菱方氮化硼(RBN)、立方氮化硼(CBN)和纖鋅礦氮化硼(WBN)。
氮化硼問世于100多年前,最早的應用是作為高溫潤滑劑的六方氮化硼,不僅其結構而且其性能也與石墨極為相似,且自身潔白,所以俗稱:白石墨。
物質特性:
CBN通常為黑色、棕色或暗紅色晶體,為閃鋅礦結構,具有良好的導熱性。硬度僅次于金剛石,是一種超硬材料,常用作刀具材料和磨料。
氮化硼具有抗化學侵蝕性質,不被無機酸和水侵蝕。在熱濃堿中硼氮鍵被斷開。1200℃以上開始在空氣中氧化。真空時約2700℃開始分解。微溶于熱酸,不溶于冷水,相對密度2.29。壓縮強度為170MPa。在氧化氣氛下最高使用溫度為900℃,而在非活性還原氣氛下可達2800℃,但在常溫下潤滑性能較差。氮化硼的大部分性能比碳素材料更優(yōu)。對于六方氮化硼:摩擦系數(shù)很低、高溫穩(wěn)定性很好、耐熱震性很好、強度很高、導熱系數(shù)很高、膨脹系數(shù)較低、電阻率很大、耐腐蝕、可透微波或透紅外線。
物質結構:
氮化硼六方晶系結晶,最常見為石墨晶格,也有無定形變體,除了六方晶型以外,氮化硼還有其他晶型,包括:菱方氮化硼(r-BN)、立方氮化硼(c-BN)、纖鋅礦型氮化硼(w-BN)。人們甚至還發(fā)現(xiàn)像石墨稀一樣的二維氮化硼晶體。
通常制得的氮化硼是石墨型結構,俗稱為白色石墨。另一種是金剛石型,和石墨轉變?yōu)榻饎偸脑眍愃疲偷鹪诟邷兀?800℃)、高壓(8000Mpa)[5~18GPa]下可轉變?yōu)榻饎傂偷稹J切滦湍透邷氐某膊牧希糜谥谱縻@頭、磨具和切割工具。
應用領域:
1. 金屬成型的脫模劑和金屬拉絲的潤滑劑。
2. 高溫狀態(tài)的特殊電解、電阻材料。
3. 高溫固體潤滑劑,擠壓抗磨添加劑,生產陶瓷復合材料的添加劑,耐火材料和抗氧化添加劑,尤其抗熔融金屬腐蝕的場合,熱增強添加劑、耐高溫的絕緣材料。
5. 壓制成各種形狀的氮化硼制品,可用做高溫、高壓、絕緣、散熱部件。
6. 航天航空中的熱屏蔽材料。
7. 在觸媒參與下,經高溫高壓處理可轉化為堅硬如金剛石的立方氮化硼。
8. 原子反應堆的結構材料。
9. 飛機、火箭發(fā)動機的噴口。
10.高壓高頻電及等離子弧的絕緣體。
11.防止中子輻射的包裝材料。
12.由氮化硼加工制成的超硬材料,可制成高速切割工具和地質勘探、石油鉆探的鉆頭。
13.冶金上用于連續(xù)鑄鋼的分離環(huán),非晶態(tài)鐵的流槽口,連續(xù)鑄鋁的脫模劑。
14.做各種電容器薄膜鍍鋁、顯像管鍍鋁、顯示器鍍鋁等的蒸發(fā)舟。
15.各種保鮮鍍鋁包裝袋等。
16.各種激光防偽鍍鋁、商標燙金材料,各種煙標,啤酒標、包裝盒,香煙包裝盒鍍鋁等等。
17.化妝品用于口紅的填料,無毒又有潤滑性,又有光澤。
未來前景:
由于鋼鐵材料硬度很高,因而加工時會產生大量的熱,金剛石工具在高溫下易分解,且容易與過渡金屬反應,而c-BN材料熱穩(wěn)定性好,且不易與鐵族金屬或合金發(fā)生反應,可廣泛應用于鋼鐵制品的精密加工、研磨等。c-BN除具有優(yōu)良的耐磨性能外,耐熱性能也極為優(yōu)良,在相當高的切削溫度下也能切削耐熱鋼、鐵合金、淬火鋼等,并且能切削高硬度的冷硬軋輥、滲碳淬火材料以及對刀具磨損非常嚴重的Si-Al合金等。實際上,由c-BN晶體(高溫高壓合成)的燒結體做成的刀具、磨具已應用于各種硬質合金材料的高速精密加工中。
c-BN作為一種寬禁帶(帶隙6.4 eV)半導體材料,具有高熱導率、高電阻率、高遷移率、低介電常數(shù)、高擊穿電場、能實現(xiàn)雙型摻雜且具有良好的穩(wěn)定性,它與金剛石、SiC和GaN一起被稱為繼Si、Ge及GaAs之后的第三代半導體材料,它們的共同特點是帶隙寬,適用于制作在極端條件下使用的電子器件。與SiC和GaN相比,c-BN與金剛石有著更為優(yōu)異的性質,如更寬的帶隙、更高的遷移率、更高的擊穿電場、更低的介電常數(shù)和更高的熱導率。顯然作為極端電子學材料,c-BN與金剛石更勝一籌。然而作為半導體材料金剛石有它致命的弱點,即金剛石的n型摻雜十分困難(其n型摻雜的電阻率只能達到102Ω·cm,遠遠未達到器件標準),而c-BN則可以實現(xiàn)雙型摻雜。例如,在高溫高壓合成以及薄膜制備過程中,添加Be可得到P型半導體;添加S、C、Si等可得到n型半導體。因此綜合看來c-BN是性能最為優(yōu)異的第三代半導體材料,不僅能用于制備在高溫、高頻、大功率等極端條件下工作的電子器件,而且在深紫外發(fā)光和探測器方面有著廣泛的應用前景。事實上,最早報道了在高溫高壓條件下制成的c-BN發(fā)光二極管,可在650℃的溫度下工作,在正向偏壓下二極管發(fā)出肉眼可見的藍光,光譜測量表明其最短波長為215 nm(5.8 eV)。c-BN具有和GaAs、Si相近的熱膨脹系數(shù),高的熱導率和低的介電常數(shù),絕緣性能好,化學穩(wěn)定性好,使它成為集成電路的熱沉材料和絕緣涂覆層。此外c-BN具有負的電子親和勢,可以用于冷陰極場發(fā)射材料,在大面積平板顯示領域具有廣泛的應用前景。在光學應用方面,由于c-BN薄膜硬度高,并且從紫外(約從200 nm開始)到遠紅外整個波段都具有高的透過率,因此適合作為一些光學元件的表面涂層,特別適合作為硒化鋅(ZnSe)、硫化鋅(ZnS)等窗口材料的涂層。此外,它具有良好的抗熱沖擊性能和商硬度,有望成為大功率激光器和探測器的理想窗窗口材料。
高導熱絕緣低介電氮化硼膜材
六方氮化硼(h-BN)這種二維結構材料,又名白石墨烯,看上去像著名的石墨烯材料一樣,僅有一個原子厚度。但是兩者很大的區(qū)別是六方氮化硼是一種天然絕緣體而石墨烯是一種完美的導體。與石墨烯不同的是,h-BN的導熱性能很好,可以量化為聲子形式(從技術層面上講,一個聲子即是一組原子中的一個準粒子)。有材料專家說道:“使用氮化硼去控制熱流看上去很值得深入研究。我們希望所有的電子器件都可以盡可能快速有效地散射。而其中的缺點之一,尤其是在對于組裝在基底上的層狀材料來說,熱量在其中某個方向上沿著傳導平面散失很快,而層之間散熱效果不好,多層堆積的石墨烯即是如此。”與石墨中的六角碳網(wǎng)相似,六方氮化硼中氮和硼也組成六角網(wǎng)狀層面,互相重疊,構成晶體。晶體與石墨相似,具有反磁性及很高的異向性,晶體參數(shù)兩者也頗為相近。
二維氮化硼散熱膜是一種性能優(yōu)異的均熱散熱材料。傳統(tǒng)的人工石墨膜和石墨烯薄膜具有電磁屏蔽的特性,在5G通訊設備中的應用場景受限,特別是在分布式天線的5G手機中。二維氮化硼散熱膜具有極低的介電系數(shù)和介電損耗,是一種理想的透電磁波散熱材料,能被用于解決5G手機散熱問題。
基于二維氮化硼納米片的復合薄膜,此散熱膜具有透電磁波、高導熱、高柔性、高絕緣、低介電系數(shù)、低介電損耗等優(yōu)異特性,是5G射頻芯片、毫米波天線領域最為有效的散熱材料之一。
高導熱透波絕緣氮化硼膜材主要應用
-
材料
+關注
關注
3文章
1254瀏覽量
27380 -
5G
+關注
關注
1356文章
48503瀏覽量
565516
發(fā)布評論請先 登錄
相關推薦
評論