**1 **問題
我們在深度學習的過程中,開始對模型進行在測試集的精度進行預測時,最開始是全連接網絡進行模型的精度預測,最后發現測試集的精度預測值不是很理想,就在想能不能換一種網絡層提高測試集的精度?
**2 **方法
在后續的學習中,我們學習和了解了卷積網絡,卷積神經網絡也是通過一層一層的節點組織起來的。和全連接神經網絡一樣,卷積神經網絡中的每一個節點就是一個神經元。在全連接神經網絡中,每相鄰兩層之間的節點都有邊相連,于是會將每一層的全連接層中的節點組織成一列,這樣方便顯示連接結構。而對于卷積神經網絡,相鄰兩層之間只有部分節點相連,為了展示每一層神經元的維度,一般會將每一層卷積層的節點組織成一個三維矩陣。
全連接層的參數太多,對于MNIST數據,每一張圖片的大小是28281,其中28*28代表的是圖片的大小,*1表示圖像是黑白的,有一個色彩通道。有的圖片會更大或者是彩色的圖片,這時候參數將會更多。參數增多除了導致計算速度減慢,還很容易導致過擬合的問題。所以需要一個合理的神經網絡結構來有效的減少神經網絡中參數的個數。卷積神經網絡就可以更好的達到這個目的。于是我們就用卷積神經網絡替代了全連接神經網絡進行測試,發現確實提高了測試集的精度。
這是全連接網絡的網絡層
這是卷積網絡的網絡層:
最后我們訓練了五十個周期,得出對比:
這是卷積網絡測試集的精度
這是全連接網絡測試集的精度
**3 **結語
我們通過訓練發現卷積網絡確實提高了網絡測試集的精度,而從中也發現了卷積神經網絡的輸入輸出以及訓練的流程和全連接神經網絡基本一致,而他們兩種網絡唯一區別就是神經網絡相鄰兩層的連接方式。
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。
舉報投訴
相關推薦
全連接神經網絡和卷積神經網絡的區別
發表于 06-06 14:21
與 FCN 通常CNN網絡在卷積層之后會接上若干個全連接層, 將卷積層產生的特征圖(feature map)映射成一個固定長度的特征向量。
發表于 09-26 17:22
?643次閱讀
卷積過程是卷積神經網絡最主要的特征。然而卷積過程有比較多的細節,初學者常會有比較多的問題,這篇文
發表于 05-02 15:39
?1.8w次閱讀
一般來說,卷積神經網絡會有三種類型的隱藏層——卷積層、池化層、全連接層。卷積層和池化層
發表于 01-30 17:23
?2w次閱讀
卷積神經網絡是一類包含卷積計算且具有深度結構的前饋神經網絡,是深度學習。卷積神經網絡具有表征學習
發表于 02-21 15:05
?1623次閱讀
電子發燒友網站提供《PyTorch教程14.11之全卷積網絡.pdf》資料免費下載
發表于 06-05 11:19
?0次下載
中最重要的神經網絡之一。它是一種由多個卷積層和池化層(也可稱為下采樣層)組成的神經網絡。CNN 的基本思想是以圖像為輸入,通過網絡的卷積、下
發表于 08-21 16:49
?2566次閱讀
。它的基本結構由卷積層、池化層和全連接層三部分組成,其中卷積層是核心部分,用于提取圖像的特征,池化層用于降低特征圖的大小,全
發表于 08-21 16:57
?9273次閱讀
像分類、目標檢測、人臉識別等。卷積神經網絡的核心是卷積層和池化層,它們構成了網絡的主干,實現了對圖像特征的提取和抽象。 一、卷積神經
發表于 08-21 16:49
?9074次閱讀
的深度學習算法。CNN模型最早被提出是為了處理圖像,其模型結構中包含卷積層、池化層和全連接層等關鍵技術,經過多個卷積層和池化層的處理,CNN可以提取出圖像中的特征信息,從而對圖像進行分
發表于 08-21 16:49
?1940次閱讀
)、池化層(Pooling Layer)和全連接層(Fully Connected Layer)。卷積神經網絡源自對腦神經細胞的研究,能夠有效地處理大規模的視覺和語音數據。本文將詳細介
發表于 08-21 16:50
?1244次閱讀
LeNet是卷積神經網絡的開山祖師,是由Yan LeCunn在1998年提出的經典卷積神經網絡模型。它最初是為手寫體數字識別而設計的,由卷積
發表于 08-21 17:11
?2997次閱讀
全卷積神經網絡(FCN)是深度學習領域中的一種特殊類型的神經網絡結構,尤其在計算機視覺領域表現出色。它通過全局平均池化或轉置卷積處理任意尺寸
發表于 07-11 11:50
?1263次閱讀
在深度學習中,卷積神經網絡(Convolutional Neural Network, CNN)是一種特別適用于處理圖像數據的神經網絡結構。它通過卷積層、池化層和
發表于 07-11 14:18
?6798次閱讀
神經網絡,也稱為全連接神經網絡(Fully Connected Neural Networks,FCNs),其特點是每一層的每個神經元都與下一層的所有神經元相連。這種結構簡單直觀,但在處理圖像等高維數據時會遇到顯著的問題,如參數
發表于 11-15 14:53
?713次閱讀
評論