在高速線路中,由于傳輸線阻抗變化的問題,會有一部分的信號能量被反射,假設信號是一個跑步的人,人從A端想要跑到B端,在人經過線路每一塊的導體時都會改變其電壓值,一開始他在阻抗為50Ω的線路上跑,碰到過孔時阻抗的變化會產生讓其速度變慢并產生一定的反彈,一直到終端為1MΩ時,此時幾乎帶著100%的能量被反彈回A端,反彈到A端時,由于A端為25Ω,會有一部分能量被留住,一部分能量被反彈,反彈的能量約為初始值的1/3。而這1/3的信號再次到達B端后,又會被反射,以此類推。在示波器上可以看到信號的上升沿和下降沿產生振蕩直至能量減弱信號幅度隨之減小。
基于上述模型,傳輸線會對整個電路設計帶來一下效應:
反射信號、延時和時序錯誤、多次跨越邏輯電平門限錯誤、過沖與下沖、串擾、電磁輻射
信號輪廓失真
信號在接收端將被反射,信號輪廓將失真。失真變形的信號對噪聲的敏感性、EMI若顯著增加,這可能會造成整改系統的失效。
反射信號產生的主要原因:過長的布線、未進行阻抗匹配的接收端、未進行阻抗匹配的傳輸線(由于過量電容、電感的阻抗失配)
信號延時
信號在邏輯電平的高、低門限之間變化時,信號遲滯不跳變。過多的信號延時可能導致時序錯誤和元器件功能混亂,通常在多個接收端時會出現問題。
信號延時產生的主要原因:驅動過載、布線過長
信號電平錯誤
信號的振蕩發生在邏輯電平門限附近,在跳變的過程中可能多次跨越邏輯電平門限,導致邏輯功能紊亂。
信號過沖與下沖
布線太長或信號變化太快都可以導致過沖與下沖發生,雖然大多數芯片器件接收端有輸入保護二極管,但有時這些過沖電平會遠遠超過器件的電壓范圍,導致器件損壞。
信號串擾
在一根信號線上有信號通過時,與之相鄰的信號線上會感應出相關信號,異步信號和時鐘信號更容易產生串擾。
解決串擾的方法:移開發生串擾的信號或屏蔽被嚴重干擾的信號。信號距離地平面越近,或者加大線間距,都可以減少串擾的發生。
電磁輻射
電流流過導體會產生磁場。在電磁干擾(EMI)中,包括產生過量的電磁輻射和對電磁輻射的敏感性兩個方面。數字系統處理快速的時鐘和周期轉換率,在系統運行時會向周圍環境輻射電磁波,從而使周圍環境中正常工作的電子設備收到干擾,而模擬電路,由于本身的高增益,會成為易受影響的電路。
EMI產生的主要原因是電路工作頻率太高及布局、布線不合理。
審核編輯 :李倩
-
pcb
+關注
關注
4323文章
23128瀏覽量
398675 -
電磁輻射
+關注
關注
5文章
355瀏覽量
43599 -
傳輸線
+關注
關注
0文章
376瀏覽量
24056
原文標題:高速線路PCB設計:傳輸線效應
文章出處:【微信號:硬件大熊,微信公眾號:硬件大熊】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論