,如何用一個(gè)神經(jīng)網(wǎng)絡(luò),寫出一套機(jī)器學(xué)習(xí)算法,來自動(dòng)識(shí)別未知的圖像。一個(gè) 4 層的神經(jīng)網(wǎng)絡(luò)輸入層經(jīng)過幾層算法得到輸出層 實(shí)現(xiàn)機(jī)器學(xué)習(xí)的方法有很多,近年被人們討論得多的方法就是深度學(xué)習(xí)。 深度學(xué)習(xí)是一種實(shí)現(xiàn)
2018-05-11 11:43:14
人臉識(shí)別應(yīng)用中的Gabor核選擇算法
2016-06-28 16:47:56
將神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53
請(qǐng)問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08
基于MATLAB的有關(guān)小波與神經(jīng)網(wǎng)絡(luò)緊致結(jié)合的源程序[hide] [/hide]
2012-02-22 15:50:21
項(xiàng)目名稱:基于PYNQ-Z2的神經(jīng)網(wǎng)絡(luò)圖形識(shí)別試用計(jì)劃:申請(qǐng)理由:本人為一名嵌入式軟件工程師,對(duì)FPGA有一段時(shí)間的接觸,基于FPGA設(shè)計(jì)過簡(jiǎn)單的ASCI數(shù)字芯片。目前正好在學(xué)習(xí)基于python
2019-01-09 14:48:59
前言前面我們通過notebook,完成了在PYNQ-Z2開發(fā)板上編寫并運(yùn)行python程序。我們的最終目的是基于神經(jīng)網(wǎng)絡(luò),完成手寫的數(shù)字識(shí)別。在這之前,有必要講一下神經(jīng)網(wǎng)絡(luò)的基本概念和工作原理。何為
2019-03-03 22:10:19
是一種常用的無監(jiān)督學(xué)習(xí)策略,在使用改策略時(shí),網(wǎng)絡(luò)的輸出神經(jīng)元相互競(jìng)爭(zhēng),每一時(shí)刻只有一個(gè)競(jìng)爭(zhēng)獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識(shí)別層、識(shí)別閾值、重置模塊構(gòu)成。其中比較層負(fù)責(zé)接收輸入樣本,并將其傳遞
2019-07-21 04:30:00
。打算最近實(shí)現(xiàn)一個(gè)基于FPGA的人臉識(shí)別系統(tǒng),并且根據(jù)其特點(diǎn)輕量化相應(yīng)神經(jīng)網(wǎng)絡(luò)等。項(xiàng)目計(jì)劃①根據(jù)文檔,對(duì)MYD-C7Z020快速入門。②通過學(xué)習(xí)MYD-C7Z020的軟件和系統(tǒng),了解實(shí)際應(yīng)用案例,熟悉
2019-10-30 17:03:42
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
優(yōu)化神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法有哪些?
2022-09-06 09:52:36
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50
的過程中存在梯度消失的問題[23],神經(jīng)網(wǎng)絡(luò)再 次慢慢淡出人們的視線。1998 年 LeCun 發(fā)明了 LeNet-5,并在 Mnist 數(shù)據(jù) 集達(dá)到 98%以上的識(shí)別準(zhǔn)確率,形成影響深遠(yuǎn)的卷積
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
列文章將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN的主要應(yīng)用領(lǐng)域是輸入數(shù)據(jù)中包含的對(duì)象的模式識(shí)別和分類。CNN是一種用于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò)。此類網(wǎng)絡(luò)由一個(gè)輸入層、多個(gè)卷積層和一個(gè)輸出層組成。卷積層是最重
2023-02-23 20:11:10
為提升識(shí)別準(zhǔn)確率,采用改進(jìn)神經(jīng)網(wǎng)絡(luò),通過Mnist數(shù)據(jù)集進(jìn)行訓(xùn)練。整體處理過程分為兩步:圖像預(yù)處理和改進(jìn)神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進(jìn)神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個(gè)過程分為兩個(gè)步驟:圖像預(yù)處理和神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33
基于RBF神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:38:52
摘 要:本文給出了采用ADXL335加速度傳感器來采集五個(gè)手指和手背的加速度三軸信息,并通過ZigBee無線網(wǎng)絡(luò)傳輸來提取手勢(shì)特征量,同時(shí)利用BP神經(jīng)網(wǎng)絡(luò)算法進(jìn)行誤差分析來實(shí)現(xiàn)手勢(shì)識(shí)別的設(shè)計(jì)方法
2018-11-13 16:04:45
基于Android平臺(tái)實(shí)現(xiàn)人臉識(shí)別
2020-06-02 17:38:14
FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13
閾值的方法[4]、差分閾值法[5]、模板匹配法[6]、小波變換法[7,8]、神經(jīng)網(wǎng)絡(luò)法[8]等。這些方法各有所長(zhǎng),但還沒有一種堪稱完美。在數(shù)據(jù)分析過程中,這些方法都要對(duì)時(shí)域內(nèi)包括噪聲在內(nèi)的所有信號(hào)樣本點(diǎn)進(jìn)行檢測(cè)、判別。
2012-11-30 16:52:53
i.MX 8開發(fā)工具從相機(jī)獲取數(shù)據(jù)并使用一個(gè)GPU并應(yīng)用圖像分割算法。然后將該信息饋送到專用于識(shí)別交通標(biāo)志的神經(jīng)網(wǎng)絡(luò)推理引擎的另一GPU。
2019-05-29 10:50:46
【新技術(shù)發(fā)布】基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署激光雷達(dá)可以準(zhǔn)確地完成三維空間的測(cè)量,具有抗干擾能力強(qiáng)、信息豐富等優(yōu)點(diǎn),但受限于數(shù)據(jù)量大、不規(guī)則等難點(diǎn),基于深度神經(jīng)網(wǎng)絡(luò)
2021-12-21 07:59:18
基于貝葉斯分類器和RBF神經(jīng)網(wǎng)絡(luò)融合的人臉識(shí)別方法的設(shè)計(jì)方案 本文基于人臉圖像分塊和奇異值壓縮,進(jìn)行RBF 神經(jīng)網(wǎng)絡(luò)和貝葉斯分類器融合的設(shè)計(jì)。將人臉圖像本身的灰度分布描述為矩陣,其奇異值特征具有轉(zhuǎn)置
2009-10-23 10:03:57
如何使用STM32F4+MPU9150實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)識(shí)別手勢(shì)?
2021-11-19 07:06:48
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11
中,從而減少故障識(shí)別的不確定度,提高模式識(shí)別的準(zhǔn)確性。文章提出了容差模擬電路軟故障診斷的小波與量子神經(jīng)網(wǎng)絡(luò)方法,利用MonteCarlo分析解決電路容差問題,又利用小波分析,取其能反映故障信號(hào)特征
2019-07-05 08:06:02
概述:ZISC78是由IBM和Sillicon聯(lián)合研發(fā)的一種具有自學(xué)習(xí)功能的徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)芯片,它內(nèi)含78個(gè)神經(jīng)元;并且采用并行結(jié)構(gòu),運(yùn)行速度與神經(jīng)元數(shù)量無關(guān);支持RBF/KNN算法;內(nèi)部可分為若干獨(dú)立子網(wǎng)...
2021-04-07 06:48:33
小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問這個(gè)控制方法可以嗎?有誰會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16
求大佬分享按鍵掃描的新方法
2022-01-17 06:50:00
測(cè)電阻,新方法,不加激勵(lì)的辦法有沒有。
2015-03-26 10:44:14
紅心(61)基于向量擬合法的多端口網(wǎng)絡(luò)函數(shù)有理逼近及其瞬態(tài)分析---------------------------------魏琰,郭裕順(67)基于Gabor小波與RBF神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別新方法
2009-08-08 09:01:04
一定的早熟收斂問題,引入一種自適應(yīng)動(dòng)態(tài)改變慣性因子的PSO算法,使算法具有較強(qiáng)的全局搜索能力.將此算法訓(xùn)練的模糊神經(jīng)網(wǎng)絡(luò)應(yīng)用于語音識(shí)別中,結(jié)果表明,與BP算法相比,粒子群優(yōu)化的模糊神經(jīng)網(wǎng)絡(luò)具有較高
2010-05-06 09:05:35
為了克服傳統(tǒng)流型識(shí)別方法的特點(diǎn),采用小波分解和RBF神經(jīng)網(wǎng)絡(luò)技術(shù)來實(shí)現(xiàn)氣液兩相流流型的智能識(shí)別。首先側(cè)量了水平管內(nèi)氣液兩相流的差壓波動(dòng)信號(hào),其次應(yīng)用小波分解對(duì)流型
2009-03-18 10:39:1113 【摘要】根據(jù)對(duì)向傳播網(wǎng)絡(luò)適于模式分類的特性,提出了基于對(duì)向傳播網(wǎng)絡(luò)的人臉識(shí)別方法。同時(shí),為了克服對(duì)向傳播網(wǎng)絡(luò)在訓(xùn)練過程中的不穩(wěn)定性,改進(jìn)了對(duì)向傳播網(wǎng)絡(luò)的學(xué)習(xí)
2009-03-19 20:52:4325 提出了一種新的人臉特征提取方法,該方法采用DCT對(duì)人臉圖像進(jìn)行降維和去噪,并通過KDA提取人臉特征。基于該特征,采用NN分類器,對(duì)ORL人臉庫進(jìn)行分類識(shí)別,僅用28個(gè)特征平均
2009-05-25 22:04:1015 將模糊徑向基函數(shù)(f-RBF)神經(jīng)網(wǎng)絡(luò)算法用于永磁同步電機(jī)(PMSM)的速度控制。針對(duì)電機(jī)的動(dòng)態(tài)和非線性特點(diǎn),結(jié)合PMSM驅(qū)動(dòng)的矢量控制方法, 設(shè)計(jì)了f-RBF在線辨識(shí)器和速度控制器。在Matl
2009-06-01 16:09:1922 應(yīng)用仿人智能魯棒性高、能對(duì)付難控對(duì)象的控制特點(diǎn),結(jié)合模糊RBF 神經(jīng)網(wǎng)絡(luò)控制技術(shù),提出仿人模糊神經(jīng)網(wǎng)絡(luò)控制方法,對(duì)PID 控制器參數(shù)進(jìn)行優(yōu)化調(diào)節(jié)。該方法采用仿人智能的
2009-06-09 10:47:3617 介紹一種基于RBF 的模糊神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)與仿真分析的實(shí)現(xiàn)方法。該方法利用MATLAB 中的神經(jīng)網(wǎng)絡(luò)工具箱圖形用戶界面GUI 結(jié)合模糊控制規(guī)則表給定的輸入/輸出樣本數(shù)據(jù)設(shè)計(jì)、構(gòu)建RBF 模糊
2009-06-10 14:22:4928 提出了一種基于神經(jīng)網(wǎng)絡(luò)故障診斷新方法。研究了基于波形直接分析和BP神經(jīng)網(wǎng)絡(luò)的電力電子整流裝置故障診斷方法。以三相橋式可控整流電路晶閘管斷路故障為例,通過對(duì)一個(gè)
2009-06-19 08:17:2418 提出了一種基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測(cè)與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測(cè)輸出和傳感器實(shí)際輸出之差來判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-06-23 08:57:0327 針對(duì)目前火災(zāi)探測(cè)技術(shù)難以滿足實(shí)際需要的問題,在分析RBF 網(wǎng)絡(luò)結(jié)構(gòu)特點(diǎn)及最近鄰聚類學(xué)習(xí)算法的基礎(chǔ)上,提出用RBF 神經(jīng)網(wǎng)絡(luò)建立火災(zāi)探測(cè)器模型,以火災(zāi)初期實(shí)驗(yàn)得到的環(huán)境溫度
2009-06-23 13:15:4124 提出了一種在經(jīng)過4 級(jí)小波變換的原始圖像中嵌入水印的算法。根據(jù)人類視覺特征來決定嵌入水印的強(qiáng)度,用秘鑰來決定水印嵌入的位置,通過使用訓(xùn)練的RBF 神經(jīng)網(wǎng)絡(luò)來嵌入和提取
2009-06-25 14:07:5115 本文提出了一種改進(jìn)的神經(jīng)網(wǎng)絡(luò)板形模式識(shí)別方法,該方法基于支持向量機(jī)(SVM)與徑向基(RBF)網(wǎng)絡(luò)的結(jié)構(gòu)等價(jià)性,利用SVM的回歸確定RBF網(wǎng)絡(luò)較優(yōu)的初始參數(shù),解決了傳統(tǒng)神經(jīng)
2009-06-29 09:54:4618 提出了一種基于神經(jīng)網(wǎng)絡(luò)的傳感器故障監(jiān)測(cè)與診斷的新方法. 該方法先用BP 網(wǎng)絡(luò)的預(yù)測(cè)輸出和傳感器實(shí)際輸出之差來判斷傳感器是否發(fā)生了故障,然后用函數(shù)型連接神經(jīng)網(wǎng)絡(luò)模擬傳
2009-07-04 11:14:5318 大型熱力控制系統(tǒng)必須能夠檢測(cè)傳感器故障,并采取相應(yīng)的措施,保證控制過程的順利進(jìn)行。提出了一種基于Powell 神經(jīng)網(wǎng)絡(luò)的故障檢測(cè)新方法,為系統(tǒng)中每一個(gè)傳感器構(gòu)造一個(gè)神經(jīng)網(wǎng)絡(luò)
2009-07-07 09:21:076 通過分析無刷直流電機(jī)間接位置檢測(cè)原理, 提出了基于徑向基函數(shù)(RBF) 神經(jīng)網(wǎng)絡(luò)的無位置傳感器控制方法。該方法建立動(dòng)態(tài)的RBF 網(wǎng)絡(luò)模型, 采用k2均值聚類法和遞推最小二乘法(RL
2009-07-13 09:45:1530 針對(duì)傳感器故障, 提出了一種基于RBF 神經(jīng)網(wǎng)絡(luò)的集成故障診斷方法。用RBF 神經(jīng)網(wǎng)絡(luò)建立傳感器故障模型, 對(duì)系統(tǒng)的狀態(tài)和故障參數(shù)進(jìn)行在線估計(jì), 然后將故障參數(shù)與修正的Bayes分類算
2009-07-14 11:58:1913 由于糧庫溫度是非線性的時(shí)間序列,文章提出了基于RBF神經(jīng)網(wǎng)絡(luò)的糧庫溫度預(yù)測(cè)模型。該模型優(yōu)于傳統(tǒng)的糧庫溫度分析方法,又避免了BP算法容易陷入局部極小點(diǎn)和收斂速度慢的
2009-08-04 07:58:308 通過在我廠蒸餾裝置上軟儀表的具體使用情況,簡(jiǎn)單介紹了基于RBF 神經(jīng)網(wǎng)絡(luò)的軟儀表的開發(fā),RBF 神經(jīng)網(wǎng)絡(luò)的特點(diǎn)、在建模中的應(yīng)用及RBF 神經(jīng)網(wǎng)絡(luò)改進(jìn)后的模型應(yīng)用。開發(fā)軟儀表的
2009-08-14 15:15:076 提出一種基于DCT-BP 神經(jīng)網(wǎng)絡(luò)的人臉表情識(shí)別算法,先對(duì)圖像進(jìn)行灰度均衡與圖像平滑的預(yù)處理,然后利用離散余弦變換提取圖像的表情特征
2009-09-09 09:02:4432 針對(duì)熱電偶的測(cè)量精度問題,建立了熱電偶傳感器的數(shù)學(xué)模型。此數(shù)學(xué)模型采用RBF 神經(jīng)網(wǎng)絡(luò),利用帶遺忘因子的梯度下降算法進(jìn)行網(wǎng)絡(luò)參數(shù)的調(diào)整,并給出了建模步驟。實(shí)際
2009-09-18 11:03:3111 引用無人直升機(jī)姿態(tài)控制模塊的簡(jiǎn)化模型,獲得其姿態(tài)控制的原理圖。采用日益完善的神經(jīng)網(wǎng)絡(luò)理論,確定RBF 神經(jīng)網(wǎng)絡(luò),再對(duì)其進(jìn)行訓(xùn)練,得到精確的神經(jīng)網(wǎng)絡(luò)模型。研究探
2009-12-08 11:43:3011 將模糊徑向基函數(shù)(f-RBF)神經(jīng)網(wǎng)絡(luò)算法用于永磁同步電機(jī)(PMSM)的速度控制。針對(duì)電機(jī)的動(dòng)態(tài)和非線性特點(diǎn),結(jié)合PMSM驅(qū)動(dòng)的矢量控制方法, 設(shè)計(jì)了f-RBF在線辨識(shí)器和速度控制器。在Matl
2009-12-14 16:52:5116 應(yīng)用仿人智能魯棒性高、能對(duì)付難控對(duì)象的控制特點(diǎn),結(jié)合模糊RBF 神經(jīng)網(wǎng)絡(luò)控制技術(shù),提出仿人模糊神經(jīng)網(wǎng)絡(luò)控制方法,對(duì)PID 控制器參數(shù)進(jìn)行優(yōu)化調(diào)節(jié)。該方法采用仿人智能的
2009-12-19 11:50:0312 本文采用免疫單克隆算法對(duì)RBF 神經(jīng)網(wǎng)絡(luò)的隱層中心值和寬度進(jìn)行優(yōu)化,用遞推最小二乘法訓(xùn)練隱層和輸出層之間的權(quán)值。并提出一種新的親和力變異方法,有效地改善了抗體變異
2009-12-29 17:17:5410 提出了基于BP 神經(jīng)網(wǎng)絡(luò)的2DPCA 人臉識(shí)別算法。通過圖像預(yù)處理改善圖像質(zhì)量,降低圖像維數(shù),然后用2DPCA 進(jìn)行特征提取,作為BP 神經(jīng)網(wǎng)絡(luò)的輸入,用改進(jìn)的BP 神經(jīng)網(wǎng)絡(luò)作為分類
2010-01-18 12:27:1418 為有效解決系統(tǒng)的最經(jīng)濟(jì)控制問題,本文提出將系統(tǒng)的經(jīng)濟(jì)收益問題轉(zhuǎn)換為對(duì)系統(tǒng)控制結(jié)構(gòu)和參數(shù)的優(yōu)化問題。首先提出將網(wǎng)絡(luò)代價(jià)的概念植入徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)(RBF網(wǎng)絡(luò))結(jié)構(gòu)的優(yōu)
2010-02-23 14:11:3311 在應(yīng)用徑向基函數(shù)RBF(Radial Basis Function)神經(jīng)網(wǎng)絡(luò)對(duì)機(jī)器人進(jìn)行軌跡規(guī)劃時(shí),為解決一般學(xué)習(xí)算法中收斂速度慢、學(xué)習(xí)精度不高的問題,提出一種混合學(xué)習(xí)算法。該方法根據(jù)軌跡規(guī)劃
2010-12-31 17:17:5118 基于FPGA的人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法的研究
引 言 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了
2009-11-17 17:17:201119 基于FPGA的人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法的研究
引言
人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwork,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線
2009-11-21 16:25:244633 RBF神經(jīng)網(wǎng)絡(luò)電力電
2011-01-06 17:44:0456 針對(duì)目前電磁場(chǎng)數(shù)值處理中計(jì)算繁雜慢速和耗費(fèi)資源過多的問題, 本文提出了一種基于神經(jīng)網(wǎng)絡(luò)小波理論進(jìn)行計(jì)算的新方法。文中著重介紹了利用小波變換神經(jīng)網(wǎng)絡(luò)的基本理論, 結(jié)合電磁
2011-05-18 16:58:3324 提出了一種基于徑向基函數(shù)(RBF) 免疫神經(jīng)網(wǎng)絡(luò) 的故障檢測(cè)方法,該故障檢測(cè)方法由系統(tǒng)辨識(shí)、殘差過濾和故障報(bào)警濃度等功能模塊構(gòu)成。系統(tǒng)辨識(shí)基于免疫RBF神經(jīng)網(wǎng)絡(luò),用于故障檢測(cè)的殘
2011-07-27 16:51:2122 基于RBF神經(jīng)網(wǎng)絡(luò)整定PID的風(fēng)力發(fā)電變槳距控制
2011-10-14 15:42:3925 為了使計(jì)算機(jī)能更好的識(shí)別人臉表情,對(duì)基于Gabor小波變換的人臉表情識(shí)別方法進(jìn)行了研究。首先對(duì)包含表情區(qū)域的靜態(tài)灰度圖像進(jìn)行預(yù)處理,包括對(duì)確定的人臉表情區(qū)域進(jìn)行尺寸和灰
2012-02-29 14:46:4739 基于GA優(yōu)化T_S模糊神經(jīng)網(wǎng)絡(luò)的小電流接地故障選線新方法_王磊
2016-12-31 14:45:090 一種卷積神經(jīng)網(wǎng)絡(luò)和極限學(xué)習(xí)機(jī)相結(jié)合的人臉識(shí)別方法_余丹
2017-01-08 11:20:200 基于改進(jìn)RBF神經(jīng)網(wǎng)絡(luò)的鋼構(gòu)件質(zhì)量預(yù)測(cè)研究_雷兆明
2017-02-07 15:05:000 基于RBF神經(jīng)網(wǎng)絡(luò)的柴油機(jī)排氣溫度智能檢測(cè)方法的研究_張丹
2017-02-07 15:05:000 多策略改進(jìn)RBF神經(jīng)網(wǎng)絡(luò)入侵檢測(cè)方法研究_邵洪濤
2017-03-19 11:29:000 基于BP神經(jīng)網(wǎng)絡(luò)和局部與整體奇異值分解的人臉識(shí)別matlab
2017-07-29 13:46:5324 RBF 神經(jīng)網(wǎng)絡(luò) 徑向基麗數(shù)(Radial Basis Function,RBF )神經(jīng)網(wǎng)絡(luò)是由J.Moody 和C.Darken 在20世紀(jì)80 年代末提出的一種神經(jīng)網(wǎng)絡(luò),它是具有單隱層的三層
2017-10-15 10:11:3319 合適的RBF網(wǎng)絡(luò)結(jié)構(gòu)才能使得混凝土強(qiáng)度預(yù)測(cè)更加適合實(shí)際工程應(yīng)用。 為綜合考慮影響因索之間的非線性關(guān)系,常用的RBF神經(jīng)網(wǎng)絡(luò)的隱含層的確定多采用:K-均值聚類算法、梯度下降發(fā)和OLS法。但是在實(shí)際工程作業(yè)中,迭代次數(shù)、訓(xùn)練
2017-11-09 14:34:2014 準(zhǔn)確地對(duì)通信用戶規(guī)模進(jìn)行預(yù)測(cè)對(duì)于通信運(yùn)營商的決策具有十分重要的意義,而現(xiàn)有的常規(guī)預(yù)測(cè)方法存在預(yù)測(cè)誤差較大、預(yù)測(cè)速率低等問題。研究一種基于RBF神經(jīng)網(wǎng)絡(luò)的通信用戶規(guī)模預(yù)測(cè)模型。為了使得RBF神經(jīng)網(wǎng)絡(luò)
2017-11-22 15:54:547 )算法的提出,給多層網(wǎng)絡(luò)訓(xùn)練提供了有效的方法。采用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行人臉識(shí)別,主要包括特征提取和神經(jīng)網(wǎng)絡(luò)識(shí)別兩大部分。其理論基礎(chǔ)已經(jīng)相當(dāng)成熟,是現(xiàn)在進(jìn)行人臉識(shí)別普遍采用的方法。自20世紀(jì)90年代以來,國內(nèi)在人臉識(shí)別領(lǐng)
2017-12-01 10:07:035 數(shù),然后訓(xùn)練改進(jìn)的人工蜂群算法RBF神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型,并將其應(yīng)用到某城市4天的短時(shí)交通流量數(shù)據(jù)的驗(yàn)證。將實(shí)驗(yàn)結(jié)果與傳統(tǒng)RBF神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型、BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型和小波神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型進(jìn)行了比較。對(duì)比結(jié)果表明,該方法對(duì)短時(shí)交通流
2017-12-01 16:31:582 為了提高人臉的識(shí)別率及其識(shí)別速度,提出了一種基于Gabor特征與投影字典對(duì)學(xué)習(xí)的人臉識(shí)別算法。由于Gabor特征對(duì)表情、光照和角度等變化具有較強(qiáng)的魯棒性,首先提取人臉圖像多方向多尺度的Gabor局部
2017-12-05 09:07:580 基于RBF神經(jīng)網(wǎng)絡(luò)的辨識(shí),徑向基函數(shù)(RBF-Radial Basis Function)神經(jīng)網(wǎng)絡(luò)是由J.Moody和C.Darken在80年代末提出的一種神經(jīng)網(wǎng)絡(luò)它是具有單隱層的三層前饋網(wǎng)絡(luò)。由于
2017-12-06 15:10:300 人臉朝向特征提取是人臉朝向識(shí)別的關(guān)鍵。本文采用基于脈沖耦合神經(jīng)網(wǎng)絡(luò)(Pulse Coupled Neural Network,簡(jiǎn)稱PCNN)的特征提取方法,分別基于其熵序列、對(duì)數(shù)序列、時(shí)間序列、標(biāo)準(zhǔn)
2017-12-20 16:30:110 深度進(jìn)化網(wǎng)絡(luò)結(jié)構(gòu)表示(DENSER)是一種用進(jìn)化算法自動(dòng)設(shè)計(jì)人工神經(jīng)網(wǎng)絡(luò)(ANNs)的新方法。該算法不僅能搜索最佳網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),還能調(diào)整超參數(shù)(比如學(xué)習(xí)或數(shù)據(jù)增強(qiáng)超參數(shù))。為了實(shí)現(xiàn)自動(dòng)設(shè)計(jì),該模型
2018-01-10 15:49:446106 借助于深度神經(jīng)網(wǎng)絡(luò),俄羅斯國立高等經(jīng)濟(jì)大學(xué)的人研究人員已經(jīng)提出了一種新方法,能夠從視頻中識(shí)別出人的身份。該方法不需要大量的照片,并且與現(xiàn)有方法相比具有明顯更高的識(shí)別準(zhǔn)確度——即使只有某個(gè)人的一張照片可用。
2018-07-24 15:27:272313 在本文工作中,作者提出了DeepIM——一種基于深度神經(jīng)網(wǎng)絡(luò)的迭代6D姿態(tài)匹配的新方法。給定測(cè)試圖像中目標(biāo)的初始6D姿態(tài)估計(jì),DeepIM能夠給出相對(duì)SE(3)變換符合目標(biāo)渲染視圖與觀測(cè)圖像之間
2018-09-28 10:23:123474 本視頻主要詳細(xì)介紹了神經(jīng)網(wǎng)絡(luò)分類,分別是BP神經(jīng)網(wǎng)絡(luò)、RBF(徑向基)神經(jīng)網(wǎng)絡(luò)、感知器神經(jīng)網(wǎng)絡(luò)、線性神經(jīng)網(wǎng)絡(luò)、自組織神經(jīng)網(wǎng)絡(luò)、反饋神經(jīng)網(wǎng)絡(luò)。
2019-04-02 15:29:2212598 變差。與此同時(shí),現(xiàn)有大多數(shù)方法無法實(shí)時(shí)(在線)完成人臉識(shí)別任務(wù),這也限制了人臉識(shí)別技術(shù)的應(yīng)用。為此,該文以深度神經(jīng)網(wǎng)絡(luò)為框架,使用大規(guī)模人臉庫構(gòu)造了一種新型實(shí)用的多層網(wǎng)絡(luò)應(yīng)用于大規(guī)模的人臉識(shí)別任務(wù)中并提出了
2019-12-04 16:57:007 基于深度學(xué)習(xí)的人臉識(shí)別算法,如何讓神經(jīng)網(wǎng)絡(luò)從訓(xùn)練數(shù)據(jù)中學(xué)習(xí)到有效、魯棒的生物特征是至關(guān)重要的。
2021-03-12 11:13:242958 基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)硬件實(shí)現(xiàn)說明。
2021-04-28 11:24:2325 基于域適應(yīng)的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。通過引入包含注意力機(jī)制的SE模塊進(jìn)行特征重標(biāo)定,同時(shí)利用域適應(yīng)方法減小領(lǐng)域差異性。在人臉識(shí)別公開數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,與 Alexnet和 Going Deep等網(wǎng)絡(luò)相比,該網(wǎng)絡(luò)能夠以較少的參數(shù)量獲得較高的識(shí)別正確率。
2021-05-19 17:10:527 自構(gòu)造RBF神經(jīng)網(wǎng)絡(luò)及其參數(shù)優(yōu)化說明。
2021-05-31 15:25:019 神經(jīng)網(wǎng)絡(luò)及BP與RBF的比較說明。
2021-06-18 09:59:1122 基于模糊RBF神經(jīng)網(wǎng)絡(luò)算法的灌溉控制系統(tǒng)
2021-06-29 14:25:290 中的參數(shù),改變模型中卷積層和全連接層特征元的數(shù)量。結(jié)果表明,本文給出的F-Net網(wǎng)絡(luò)模型在復(fù)雜環(huán)境背景下的人臉圖像分類準(zhǔn)確率達(dá)到73%,較其他經(jīng)典的卷積神經(jīng)網(wǎng)絡(luò)分類模型相比性能更佳。
2023-07-19 14:38:250 RBF神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)網(wǎng)絡(luò)的區(qū)別就在于訓(xùn)練方法上面:RBF的隱含層與輸入層之間的連接權(quán)值不是隨機(jī)確定的,是有一種固定算式的。
2023-07-19 17:34:26787 摘要:針對(duì)非限條件下人臉識(shí)別準(zhǔn)確率較低的問題,提出一種基于粒神經(jīng)網(wǎng)絡(luò)(MNN)與遺傳算法優(yōu)化的人臉識(shí)別算法。對(duì)人臉庫進(jìn)行初始化分析決定每個(gè)粒子中人臉的分布,將同一復(fù)雜度級(jí)別的數(shù)據(jù)分為一組;將人臉
2023-07-20 15:38:520 電子發(fā)燒友網(wǎng)站提供《基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)的硬件實(shí)現(xiàn).pdf》資料免費(fèi)下載
2023-10-23 10:21:250
評(píng)論
查看更多