FusionNet的核心是全新的、應(yīng)用于3D物體的三維卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)。我們必須在多個(gè)方面調(diào)整傳統(tǒng)的CNN以使其有效。
2020-01-16 16:36:003424 神經(jīng)網(wǎng)絡(luò)50例
2012-11-28 16:49:56
神經(jīng)網(wǎng)絡(luò)Matlab程序
2009-09-15 12:52:24
大家有知道labview中神經(jīng)網(wǎng)絡(luò)和SVM的工具包是哪個(gè)嗎?求分享一下,有做這方面的朋友也可以交流一下,大家共同進(jìn)步
2017-10-13 11:41:43
神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23
第1章 概述 1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展 1.2 生物神經(jīng)元 1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成 第2章人工神經(jīng)網(wǎng)絡(luò)基本模型 2.1 MP模型 2.2 感知器模型 2.3 自適應(yīng)線性
2012-03-20 11:32:43
將神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53
神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介
2012-08-05 21:01:08
制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開(kāi)辟了令人興奮的研究途徑。為了實(shí)現(xiàn)從諸如高速公路全程自動(dòng)駕駛儀的短時(shí)輔助模式到專職無(wú)人駕駛旅行的自動(dòng)駕駛,汽車制造業(yè)一直在尋求讓響應(yīng)速度更快、識(shí)別準(zhǔn)確度更高的方法,而深度
2017-12-21 17:11:34
基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
針對(duì)傳統(tǒng)比例積分(PI)控制在電機(jī)控制中控制效果不良的問(wèn)題,設(shè)計(jì)了一種基于向后傳播算法(BP)模糊神經(jīng)網(wǎng)絡(luò)的PI控制器。基于MATLAB/Simulink建立了純電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)的仿真模型,將駕駛員
2019-12-10 16:32:40
FPGA加速的關(guān)鍵因素是什么?EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?
2021-09-28 06:37:44
MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13
請(qǐng)問(wèn):我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒(méi)有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08
習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對(duì)于神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)是如何一直沒(méi)有具體實(shí)現(xiàn)一下:現(xiàn)看到一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對(duì)應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個(gè)數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21
對(duì)神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí),講解其工作原理。4.基于PYNQ-Z2,用python實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)。5.訓(xùn)練和測(cè)試神經(jīng)網(wǎng)絡(luò),完成神經(jīng)網(wǎng)絡(luò)最經(jīng)典的入門實(shí)驗(yàn)--手寫數(shù)字識(shí)別。6.如時(shí)間充足,會(huì)利用板子上
2019-01-09 14:48:59
python語(yǔ)言,可以很輕松地實(shí)現(xiàn)復(fù)雜的數(shù)學(xué)運(yùn)算,降低編程難度。下一篇文章,將通過(guò)具體代碼,演示基于神經(jīng)網(wǎng)絡(luò)的手寫圖形識(shí)別。
2019-03-03 22:10:19
` 本帖最后由 楓雪天 于 2019-3-2 23:12 編輯
本次試用PYNQ-Z2的目標(biāo)作品是“基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車”。在之前的一個(gè)多月內(nèi),已經(jīng)完成了整個(gè)項(xiàng)目初步實(shí)現(xiàn),在接下來(lái)
2019-03-02 23:10:52
電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對(duì)各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁(yè)面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14
是一種常用的無(wú)監(jiān)督學(xué)習(xí)策略,在使用改策略時(shí),網(wǎng)絡(luò)的輸出神經(jīng)元相互競(jìng)爭(zhēng),每一時(shí)刻只有一個(gè)競(jìng)爭(zhēng)獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識(shí)別層、識(shí)別閾值、重置模塊構(gòu)成。其中比較層負(fù)責(zé)接收輸入樣本,并將其傳遞
2019-07-21 04:30:00
`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個(gè)隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實(shí)由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò):神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問(wèn)題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過(guò)程而開(kāi)發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對(duì)如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過(guò)程看成是一個(gè)“網(wǎng)絡(luò)”,通過(guò)不斷地給
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48
,如何用一個(gè)神經(jīng)網(wǎng)絡(luò),寫出一套機(jī)器學(xué)習(xí)算法,來(lái)自動(dòng)識(shí)別未知的圖像。一個(gè) 4 層的神經(jīng)網(wǎng)絡(luò)輸入層經(jīng)過(guò)幾層算法得到輸出層 實(shí)現(xiàn)機(jī)器學(xué)習(xí)的方法有很多,近年被人們討論得多的方法就是深度學(xué)習(xí)。 深度學(xué)習(xí)是一種實(shí)現(xiàn)
2018-05-11 11:43:14
簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
圖卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29
優(yōu)化神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法有哪些?
2022-09-06 09:52:36
概述硬件上使用STM32F4+MPU9150實(shí)現(xiàn)的神經(jīng)網(wǎng)絡(luò)識(shí)別手勢(shì),不過(guò)沒(méi)有用IMU的地磁數(shù)據(jù),只用了三軸加速度計(jì)和三軸陀螺儀的數(shù)據(jù),板子是自己畫的主要參照了意法官方的開(kāi)發(fā)板的原理圖(人生畫的第一個(gè)
2021-08-17 06:53:12
全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42
以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署在云端(服務(wù)器上),設(shè)備端采集到數(shù)據(jù)通過(guò)網(wǎng)絡(luò)發(fā)送給服務(wù)器做inference(推理),結(jié)果再通過(guò)網(wǎng)絡(luò)返回給設(shè)備端。如今越來(lái)越多的神經(jīng)網(wǎng)絡(luò)部署在嵌入式設(shè)備端上,即
2021-12-23 06:16:40
卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問(wèn)題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50
的過(guò)程中存在梯度消失的問(wèn)題[23],神經(jīng)網(wǎng)絡(luò)再 次慢慢淡出人們的視線。1998 年 LeCun 發(fā)明了 LeNet-5,并在 Mnist 數(shù)據(jù) 集達(dá)到 98%以上的識(shí)別準(zhǔn)確率,形成影響深遠(yuǎn)的卷積
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
通過(guò)網(wǎng)絡(luò)訓(xùn)練來(lái)確定才能使模型工作。這將在后續(xù)文章“訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò):什么是機(jī)器學(xué)習(xí)?—第 2 部分”中解釋。第 3 部分將解釋我們討論過(guò)的神經(jīng)網(wǎng)絡(luò)的硬件實(shí)現(xiàn)(例如貓識(shí)別)。為此,我們將使
2023-02-23 20:11:10
什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22
我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制器的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。關(guān)鍵詞識(shí)別
2021-07-26 09:46:37
需要圖像處理、神經(jīng)網(wǎng)絡(luò)、模式識(shí)別等方面MATLAB程序共享的朋友或同學(xué)可以加QQ:75 68 19 787,歡迎加入!
2012-05-10 16:45:37
為提升識(shí)別準(zhǔn)確率,采用改進(jìn)神經(jīng)網(wǎng)絡(luò),通過(guò)Mnist數(shù)據(jù)集進(jìn)行訓(xùn)練。整體處理過(guò)程分為兩步:圖像預(yù)處理和改進(jìn)神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進(jìn)神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個(gè)過(guò)程分為兩個(gè)步驟:圖像預(yù)處理和神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33
在xr806板子上如何實(shí)現(xiàn)用ncnn跑神經(jīng)網(wǎng)絡(luò)mnis呢?
2021-12-28 06:51:07
最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過(guò)對(duì)系統(tǒng)性能的學(xué)習(xí)來(lái)實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47
摘 要:本文給出了采用ADXL335加速度傳感器來(lái)采集五個(gè)手指和手背的加速度三軸信息,并通過(guò)ZigBee無(wú)線網(wǎng)絡(luò)傳輸來(lái)提取手勢(shì)特征量,同時(shí)利用BP神經(jīng)網(wǎng)絡(luò)算法進(jìn)行誤差分析來(lái)實(shí)現(xiàn)手勢(shì)識(shí)別的設(shè)計(jì)方法
2018-11-13 16:04:45
基于BP神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:37:27
FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問(wèn)題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13
基于RBF神經(jīng)網(wǎng)絡(luò)的辨識(shí)
2018-01-04 13:38:52
i.MX 8開(kāi)發(fā)工具從相機(jī)獲取數(shù)據(jù)并使用一個(gè)GPU并應(yīng)用圖像分割算法。然后將該信息饋送到專用于識(shí)別交通標(biāo)志的神經(jīng)網(wǎng)絡(luò)推理引擎的另一GPU。
2019-05-29 10:50:46
的激光雷達(dá)物體識(shí)別技術(shù)一直難以在嵌入式平臺(tái)上實(shí)時(shí)運(yùn)行。經(jīng)緯恒潤(rùn)經(jīng)過(guò)潛心研發(fā),攻克了深度神經(jīng)網(wǎng)絡(luò)在嵌入式平臺(tái)部署所面臨的算子定制與加速、量化策略、模型壓縮等難題,率先實(shí)現(xiàn)了高性能激光檢測(cè)神經(jīng)網(wǎng)絡(luò)并成功地在嵌入式平臺(tái)(德州儀TI TDA4系列)上完成部署。系統(tǒng)功能目前該系統(tǒng):?支持接入禾賽Pandar 40和
2021-12-21 07:59:18
基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署
2021-01-04 06:26:23
FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問(wèn)題方面已大獲成功。在當(dāng)前案例中,針對(duì)在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41
如何使用STM32F4+MPU9150實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)識(shí)別手勢(shì)?
2021-11-19 07:06:48
如何使用STM32F4+MPU9150去實(shí)現(xiàn)一種神經(jīng)網(wǎng)絡(luò)識(shí)別手勢(shì)呢?其過(guò)程是怎樣的?
2021-11-19 06:38:58
如何用stm32cube.ai簡(jiǎn)化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
不確定因素影響,并且隨著可編程片上系統(tǒng)SoPC和大規(guī)模現(xiàn)場(chǎng)可編程門陣列FPGA的出現(xiàn),為神經(jīng)網(wǎng)絡(luò)控制器的硬件實(shí)現(xiàn)提供了新的載體。
2019-08-12 06:25:35
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11
(Digital Signal Processor)相比,現(xiàn)場(chǎng)可編程門陣列(Field Programma-ble Gate Array,F(xiàn)PGA)在神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)上更具優(yōu)勢(shì)。DSP處理器在處理時(shí)采用指令順序執(zhí)行
2019-08-08 06:11:30
中,從而減少故障識(shí)別的不確定度,提高模式識(shí)別的準(zhǔn)確性。文章提出了容差模擬電路軟故障診斷的小波與量子神經(jīng)網(wǎng)絡(luò)方法,利用MonteCarlo分析解決電路容差問(wèn)題,又利用小波分析,取其能反映故障信號(hào)特征
2019-07-05 08:06:02
本文對(duì)小波神經(jīng)網(wǎng)絡(luò)提出了兩個(gè)方面的改進(jìn)并將其應(yīng)用于汽車電控汽油機(jī)故障診斷中。
2021-05-19 07:10:45
有提供編寫神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)程序服務(wù)的嗎?
2011-12-10 13:50:46
誰(shuí)有利用LABVIEW 實(shí)現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序啊(我用的版本是8.6的 )
2012-11-26 14:54:59
求助地震波神經(jīng)網(wǎng)絡(luò)程序,共同交流!!
2013-05-11 08:14:19
小女子做基于labview的蒸發(fā)過(guò)程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請(qǐng)問(wèn)這個(gè)控制方法可以嗎?有誰(shuí)會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16
求助大神 小的現(xiàn)在有個(gè)難題: 一組車重實(shí)時(shí)數(shù)據(jù) 對(duì)應(yīng)一個(gè)車重的最終數(shù)值(一個(gè)一維數(shù)組輸入對(duì)應(yīng)輸出一個(gè)數(shù)值) 這其中可能經(jīng)過(guò)均值、方差、去掉N個(gè)最大值、、、等等的計(jì)算 我的目的就是弄清楚這個(gè)中間計(jì)算過(guò)程 最近實(shí)在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請(qǐng)教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44
求高手,基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實(shí)現(xiàn)過(guò)程,最好有程序哈,謝謝!!
2012-12-10 14:55:50
最簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)
2019-09-11 11:57:36
一定的早熟收斂問(wèn)題,引入一種自適應(yīng)動(dòng)態(tài)改變慣性因子的PSO算法,使算法具有較強(qiáng)的全局搜索能力.將此算法訓(xùn)練的模糊神經(jīng)網(wǎng)絡(luò)應(yīng)用于語(yǔ)音識(shí)別中,結(jié)果表明,與BP算法相比,粒子群優(yōu)化的模糊神經(jīng)網(wǎng)絡(luò)具有較高
2010-05-06 09:05:35
脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)在FPGA上的實(shí)現(xiàn),實(shí)現(xiàn)數(shù)據(jù)分類功能,有報(bào)酬。QQ470345140.
2013-08-25 09:57:14
原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測(cè)等機(jī)器
2021-12-14 07:35:25
本周在加利福利亞舉辦的嵌入式視覺(jué)峰會(huì)(EVS)上,我們展示了最新的卷積神經(jīng)網(wǎng)絡(luò)(CNN)物體識(shí)別演示。自在去年的EVS大會(huì)上發(fā)布原始演示以來(lái),我們對(duì)其進(jìn)行了多番擴(kuò)展,目前,演示已擴(kuò)展到涵括多個(gè)網(wǎng)絡(luò)模型,且目前使用的是Imagination的圖像編譯庫(kù)——IMG DNN。
2018-04-27 10:18:001096 模糊神經(jīng)網(wǎng)絡(luò)就是模糊理論同神經(jīng)網(wǎng)絡(luò)相結(jié)合的產(chǎn)物,它匯集了神經(jīng)網(wǎng)絡(luò)與模糊理論的優(yōu)點(diǎn),集學(xué)習(xí)、聯(lián)想、識(shí)別、信息處理于一體。
2017-12-29 14:40:4047546 如何在Node.js環(huán)境下使用訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型(Inception、SSD)識(shí)別圖像中的物體。
2018-04-06 13:11:128632 深度神經(jīng)網(wǎng)絡(luò)非常善于識(shí)別物體,但是當(dāng)涉及到他們的相互作用的推理時(shí),即使是最先進(jìn)的神經(jīng)網(wǎng)絡(luò)也在努力。
2020-04-14 15:24:47712 美國(guó)加州大學(xué)洛杉磯分校研發(fā)了一種光學(xué)神經(jīng)網(wǎng)絡(luò),可能可以生產(chǎn)出無(wú)需額外計(jì)算機(jī)處理就可立即識(shí)別物體的光學(xué)設(shè)備。
2020-04-15 17:13:041917 有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。
這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:05:34451 有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。
這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:13377 有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。
這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:18467 有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。
這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:21443 對(duì)MNIST數(shù)據(jù)集使用2層神經(jīng)網(wǎng)絡(luò)(1層隱藏層)實(shí)現(xiàn)。
2023-06-23 16:57:00268 在練習(xí)二中,手寫數(shù)字識(shí)別使用數(shù)值微分的方式實(shí)現(xiàn)了神經(jīng)網(wǎng)絡(luò),現(xiàn)在用誤差反向傳播法來(lái)實(shí)現(xiàn)。兩者的區(qū)別僅僅是使用不同方法求梯度。
2023-06-23 16:57:00424 。CNN可以幫助人們實(shí)現(xiàn)許多有趣的任務(wù),如圖像分類、物體檢測(cè)、語(yǔ)音識(shí)別、自然語(yǔ)言處理和視頻分析等。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的工作原理并用通俗易懂的語(yǔ)言解釋。 1.概述 卷積神經(jīng)網(wǎng)絡(luò)是一個(gè)由神經(jīng)元構(gòu)成的深度神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。在卷積神經(jīng)網(wǎng)絡(luò)中,
2023-08-21 16:49:242216 為多層卷積層、池化層和全連接層。CNN模型通過(guò)訓(xùn)練識(shí)別并學(xué)習(xí)高度復(fù)雜的圖像模式,對(duì)于識(shí)別物體和進(jìn)行圖像分類等任務(wù)有著非常優(yōu)越的表現(xiàn)。本文將會(huì)詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)如何識(shí)別圖像,主要包括以下幾個(gè)方面: 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和原理 2. 卷積神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練過(guò)程 3.
2023-08-21 16:49:271284 卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類、物體識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域
2023-08-21 16:49:461229
評(píng)論
查看更多