1 概述
隨著現(xiàn)代通信設(shè)備的迅速發(fā)展,特別是微電子技術(shù)的發(fā)展,伴隨著各種電源的發(fā)展,各種各樣的 PWM型直流變換器集成控制器也不斷出現(xiàn),這使開關(guān)穩(wěn)壓電源的元件數(shù)量大幅度減少。這不但使開關(guān)穩(wěn)壓電源的可靠性提高,而且還能簡(jiǎn)化開關(guān)穩(wěn)壓電源的設(shè)計(jì)計(jì)算,使開關(guān)穩(wěn)壓電源更便于生產(chǎn)和維護(hù)。
本文針對(duì)當(dāng)今比較流行的一款電源控制器PWM芯片進(jìn)行了分析。
2 工作原理
芯片的原理框圖如圖1。內(nèi)部電路主要由10部分組成:振蕩器、PWM比較器、限流比較器、過(guò)流比較器、基準(zhǔn)電壓源、故障所存器、欠壓?jiǎn)?dòng)電路、欠壓鎖定、PWM鎖存器和輸出驅(qū)動(dòng)器。
2.1 振蕩器
芯片工作時(shí),振蕩器為電路提供方波,是電路最關(guān)鍵的一部分電路。方波的產(chǎn)生由鋸齒波輸入比較器得出,鋸齒波上升沿的斜率由 R t 和Ct決定,確定R t 和Ct的方法是:首先根據(jù)求得的最大占空比Dmax選擇Rt Rt,再根據(jù)要求的頻率以及R t 和Dmax選擇Ct。計(jì)算公式為
Rt=3V/[(10mA)(1- Dmax)]
Ct=1.6×D max/( R t×F) R t 的最佳值應(yīng)為1Ω到10kΩ;Dmax應(yīng)小于70%。圖2是 R t 和Ct與頻率f的關(guān)系。
2.2 上升沿封鎖
本芯片采用固定頻率脈寬調(diào)制,兩個(gè)輸出端可同時(shí)輸出脈沖,輸出脈沖的頻率與振蕩器頻率相等,脈沖占空比可在0到100%內(nèi)調(diào)整。兩個(gè)輸出端交替輸出脈沖。為了限制最大占空比,在振蕩器放電期間,內(nèi)部時(shí)鐘脈沖對(duì)兩路輸出進(jìn)行封鎖。在時(shí)鐘的下降沿,輸出端為高電平。輸出脈沖的下降沿由脈寬調(diào)制比較器,限流比較器和過(guò)流比較器聯(lián)合控制。通常,脈寬調(diào)制比較器檢測(cè)出斜波電壓與控制電壓的交點(diǎn),并且在該交點(diǎn)處終止輸出脈沖。因?yàn)椴捎昧松仙胤怄i,在脈沖前沿的一定時(shí)間內(nèi),脈寬調(diào)制比較器不起作用。這樣,開關(guān)電源的固有噪聲就能被有效地控制。同時(shí)由于采用了輸出脈沖上升沿封鎖,脈寬調(diào)制器的斜波輸入就不需要再經(jīng)過(guò)濾波。上升沿封鎖也是用于限流比較器。上升沿封鎖之后,如果限流(1LIM)腳的電壓超過(guò)1V,輸出脈沖就終止。但是,過(guò)流比較器不能采用前沿封鎖,這樣,就不會(huì)因?yàn)榍把胤怄i而延長(zhǎng)保護(hù)時(shí)間,從而可以及時(shí)捕捉過(guò)流故障。在任何時(shí)間,只要限流(1LIM)腳的電壓超過(guò)1.2V,故障閉鎖就起作用,從而使輸出端變?yōu)榈碗娖健?
2.3 欠壓鎖定、軟啟動(dòng)以及故障處理
軟啟動(dòng)是通過(guò)軟啟動(dòng)(SOFT START)腳的外接電容實(shí)現(xiàn)的。接通電源后,軟啟動(dòng)腳外接電容放電,該腳處于低電平,誤差放大器輸出低電平,開關(guān)電源無(wú)輸出電壓。
啟動(dòng)腳外接電容充電時(shí),誤差放大器輸出電壓逐漸升高,直到閉環(huán)調(diào)節(jié)功能開始工作,開關(guān)電源輸出電壓逐漸升高到額定值。一旦電流(1LIM)腳的電平超過(guò)1.2V,故障鎖存置位輸出腳變?yōu)榈碗娖剑瑫r(shí),軟啟動(dòng)腳外接電容以250μA的電流放電。在軟啟動(dòng)電容放電以后,限流腳電平降到1.2 V以下時(shí),故障鎖存器就不再輸出脈沖,這時(shí),故障鎖存器復(fù)位,芯片開始軟啟動(dòng)過(guò)程。在軟啟動(dòng)期間, 萬(wàn)一故障鎖存器置位,輸出會(huì)立即終止。但是軟啟動(dòng)腳外接電容在充足電之前不會(huì)放電。這樣,在故障連續(xù)出現(xiàn)的情況下,輸出就會(huì)出現(xiàn)一個(gè)間斷期。
2.4 電流輸出電路
芯片推拉式輸出電路的每個(gè)輸出端都可輸出峰值為2A的電流。該輸出電流在20ns內(nèi)可使1000pF電容兩端的電壓上升15V。采用獨(dú)立的集電極電源和功率地線腳,能夠減小大功率門極驅(qū)動(dòng)噪聲對(duì)集成電路內(nèi)模擬電路的干擾。每個(gè)輸出端(OUT)到集電極電源和地線之間都應(yīng)加入一只3A的肖特基二極管,該二極管可以將輸出電壓的幅值鉗位在電源電壓。這對(duì)于任何電感性和電容性負(fù)載都有必要。應(yīng)當(dāng)指出,該芯片采用的二極管不是一般的二極管,而是肖特基二極管,因?yàn)橐蠖O管的壓降很低,大部分3A肖特基二極管均可以滿足這一要求。
3 振蕩器電路及分析
這部分的具體電路如圖3。本電路主要是實(shí)現(xiàn)振蕩器的功能。振蕩器在開始工作時(shí),out2的電壓為零,左邊是由三個(gè)三極管Q6、Q7、Q8組成的恒流源,對(duì)其外接電容 Ct充電。此時(shí)out2的電位開始上升,out2的電位與Q4的基極的電位進(jìn)行比較。如果out2的電位高,則Q4截止,out1輸出的方波為高電位, 此時(shí)Q12管的基極電位也升高到足夠讓Q12管開始導(dǎo)通,并對(duì) Ct電容開始放電;如果out2的電位低于Q4管的基極電位,則Q4管導(dǎo)通,此時(shí)out1輸出為低電位,Q12管的基極電位比較低,Q12管截止,不對(duì) Ct放電;Q6、Q7、Q8管組成的恒流源繼續(xù)對(duì)電容 Ct充電,out2的電位繼續(xù)升高,最終使電位高于Q4基極電位。out1的電位輸出為高電平,Q12管導(dǎo)通并截止對(duì) Ct的充放電,使得在out2處產(chǎn)生鋸齒波,out1處輸出方波。本文使用PSPICE軟件對(duì)電路進(jìn)行模擬分析時(shí)產(chǎn)生的波形如圖4。
本芯片的振蕩器設(shè)計(jì)時(shí)使用了很多恒流源,因?yàn)楹懔髟吹闹绷?a target="_blank">電阻很小,而交流電阻很大,從而使振蕩器在工作時(shí),流過(guò)主要支路的電流穩(wěn)定。交流電阻大,可使電流流過(guò)電路元件時(shí)產(chǎn)生的壓降變化很小(電路電流為μA級(jí))。Q17、Q19、 R16、R17在out1輸出為高點(diǎn)平時(shí)為Q12的基極鉗位,使之達(dá)到足夠高的電位來(lái)導(dǎo)通Q12。外接電阻Rt 的大小直接影響Q15集電極電流的大小,從而達(dá)到控制Q6、Q7、Q8組成的恒流源對(duì)外接電容 Ct充電電流的大小。電流越大,對(duì)電容充電的時(shí)間越短,產(chǎn)生鋸齒波的周期也越短。R11、R 12、R13、R14 電 阻都為小值電阻,在版圖設(shè)計(jì)時(shí)應(yīng)該做得極為精確,因?yàn)槭怯伤鼈児餐瑳Q定Q12發(fā)射極的電位。電阻R6、R 15對(duì)Q11的基極進(jìn)行鉗位,使Q11管處于永遠(yuǎn)導(dǎo)通狀態(tài),此時(shí)的Q13也為導(dǎo)通狀態(tài)。流過(guò) Q13發(fā)射極的電流為在Q12管截止時(shí)的Q21、Q18工作提供電流。
4 電路及工作原理
振蕩器的電路如圖5。它由Q1、Q2組成雙閾值比較器,Q1的基極與一個(gè)恒流源及外接電容C t相連;Q2的基極A點(diǎn)電位受Q1的截止和導(dǎo)通控制,交替在高、低電平間轉(zhuǎn)換。當(dāng)Q1截止時(shí),A點(diǎn)為高電平;當(dāng)Q1導(dǎo)通時(shí),A點(diǎn)為低電平。由Q3、 Q4、Q5組成一個(gè)嚴(yán)格對(duì)稱的精密威爾遜恒流源,其參考電流受5腳外接電阻 Rt控制,其工作過(guò)程如下:開始工作時(shí)( t=0),電容Ct上的電壓VC t=0=VbQ1<Vb Q2,從而使Q1截止,Q2、Q3導(dǎo)通,A點(diǎn)電位為高電平,Q4、Q5、Q6截止,恒流源給Ct充電;當(dāng)VC t升至高電平后,Q1導(dǎo)通,Q2、Q3截止;A電位低電平,Q4、Q5、Q6 導(dǎo)通,Ct通過(guò)Q4放電,VC t下降。當(dāng)VCt下降至低電平時(shí),Q1截止,Q2導(dǎo)通,比較器翻轉(zhuǎn)并如此循環(huán)。圖5中out3得到的鋸齒波和圖2中out2振蕩器產(chǎn)生的鋸齒波相同,圖5中out1輸出的波形和圖 2中out1處產(chǎn)生的方波相同,結(jié)果證明設(shè)計(jì)是可行的。
5 結(jié)論
最終的振蕩器的簡(jiǎn)化設(shè)計(jì)電路經(jīng)過(guò)模擬得出的結(jié)果和本文分析的芯片中的振蕩器相比,雖然可以實(shí)現(xiàn)同樣的功能,但是產(chǎn)生的鋸齒波的最高頻率和芯片中振蕩器產(chǎn)生的鋸齒波的最高頻率相比,還有一定的差距。
評(píng)論
查看更多