pn結(jié)工作原理
1.2.1 PN結(jié)的形成
在一塊本征半導(dǎo)體的兩側(cè)通過擴散不同的雜質(zhì),分別形成N型半導(dǎo)體和P型半導(dǎo)體。此時將在N型半導(dǎo)體和P型半導(dǎo)體的結(jié)合面上形成如下物理過程:
因濃度差
↓
多子的擴散運動®由雜質(zhì)離子形成空間電荷區(qū)
↓
空間電荷區(qū)形成形成內(nèi)電場
↓ ↓
內(nèi)電場促使少子漂移 內(nèi)電場阻止多子擴散
最后,多子的擴散和少子的漂移達到動態(tài)平衡。在P型半導(dǎo)體和N型半導(dǎo)體的結(jié)合面兩側(cè),留下離子薄層,這個離子薄層形成的空間電荷區(qū)稱為PN結(jié)。PN結(jié)的內(nèi)電場方向由N區(qū)指向P區(qū)。在空間電荷區(qū),由于缺少多子,所以也稱耗盡層。PN結(jié)形成的過程可參閱圖01.06。
圖01.06 PN結(jié)的形成過程(動畫1-3)如打不開點這兒(壓縮后的)
1.2.2 PN結(jié)的單向?qū)щ娦?/B>
PN結(jié)具有單向?qū)щ娦?,若外加電壓?a href="http://m.1cnz.cn/tags/電流/" target="_blank">電流從P區(qū)流到N區(qū),PN結(jié)呈低阻性,所以電流大;反之是高阻性,電流小。
如果外加電壓使:
PN結(jié)P區(qū)的電位高于N區(qū)的電位稱為加正向電壓,簡稱正偏;
PN結(jié)P區(qū)的電位低于N區(qū)的電位稱為加反向電壓,簡稱反偏。
(1) PN結(jié)加正向電壓時的導(dǎo)電情況
PN結(jié)加正向電壓時的導(dǎo)電情況如圖01.07所示。
外加的正向電壓有一部分降落在PN結(jié)區(qū),方向與PN結(jié)內(nèi)電場方向相反,削弱了內(nèi)電場。于是,內(nèi)電場對多子擴散運動的阻礙減弱,擴散電流加大。擴散電流遠大于漂移電流,可忽略漂移電流的影響,PN結(jié)呈現(xiàn)低阻性。
圖01.07 PN結(jié)加正向電壓時的導(dǎo)電情況(動畫1-4),如打不開點這兒(壓縮后的)
(2) PN結(jié)加反向電壓時的導(dǎo)電情況
PN結(jié)加反向電壓時的導(dǎo)電情況如圖01.08所示。
外加的反向電壓有一部分降落在PN結(jié)區(qū),方向與PN結(jié)內(nèi)電場方向相同,加強了內(nèi)電場。內(nèi)電場對多子擴散運動的阻礙增強,擴散電流大大減小。此時PN結(jié)區(qū)的少子在內(nèi)電場作用下形成的漂移電流大于擴散電流,可忽略擴散電流,PN結(jié)呈現(xiàn)高阻性。
在一定的溫度條件下,由本征激發(fā)決定的少子濃度是一定的,故少子形成的漂移電流是恒定的,基本上與所加反向電壓的大小無關(guān),這個電流也稱為反向飽和電流。
PN結(jié)加正向電壓時,呈現(xiàn)低電阻,具有較大的正向擴散電流;PN結(jié)加反向電壓時,呈現(xiàn)高電阻,具有很小的反向漂移電流。由此可以得出結(jié)論:PN結(jié)具有單向?qū)щ娦浴?nbsp;
圖01.08 PN結(jié)加反向電壓時的導(dǎo)電情況(動畫1-5),如打不開點這兒(壓縮后的)
1.2.3 PN結(jié)的電容效應(yīng)
PN結(jié)具有一定的電容效應(yīng),它由兩方面的因素決定。一是勢壘電容CB ,二是擴散電容CD 。
(1) 勢壘電容CB
勢壘電容是由空間電荷區(qū)的離子薄層形成的。當外加電壓使PN結(jié)上壓降發(fā)生變化時,離子薄層的厚度也相應(yīng)地隨之改變,這相當PN結(jié)中存儲的電荷量也隨之變化,猶如電容的充放電。勢壘電容的示意圖見圖01.09。
圖01.09 勢壘電容示意圖
(2) 擴散電容CD
擴散電容是由多子擴散后,在PN結(jié)的另一側(cè)面積累而形成的。因PN結(jié)正偏時,由N區(qū)擴散到P區(qū)的電子,與外電源提供的空穴相復(fù)合,形成正向電流。剛擴散過來的電子就堆積在 P 區(qū)內(nèi)緊靠PN結(jié)的附近,形成一定的多子濃度梯度分布曲線。反之,由P區(qū)擴散到N區(qū)的空穴,在N區(qū)內(nèi)也形成類似的濃度梯度分布曲線。擴散電容的示意圖如圖01.10所示。
當外加正向電壓不同時,擴散電流即外電路電流的大小也就不同。所以PN結(jié)兩側(cè)堆積的多子的濃度梯度分布也不同,這就相當電容的充放電過程。勢壘電容和擴散電容均是非線性電容。
評論