色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用人工神經(jīng)網(wǎng)絡(luò)控制真實大腦,MIT的科學(xué)家做到了

mK5P_AItists ? 來源:工程師李察 ? 2019-05-11 16:45 ? 次閱讀

三位研究者分別是 MIT 大腦與行為科學(xué)系主任 James DiCarlo、MIT 博士后 Pouya Bashivan 和 Kohitij Kar。相關(guān)論文發(fā)表在 5 月 2 日 Science 的網(wǎng)絡(luò)版上。

論文鏈接:http s://www.biorxiv.org/content/10.1101/461525v1

研究人員表示,他們最初的目的是探索大腦如何感知和理解視覺世界。為此,他們創(chuàng)建了可以模擬大腦視覺皮層的計算模型。但僅僅創(chuàng)建模型是不夠的,他們還想知道自己創(chuàng)建的模型是否準(zhǔn)確。

于是,他們嘗試用創(chuàng)建的模型控制神經(jīng)元,測試他們的模型能否精確地控制單個神經(jīng)元以及視覺神經(jīng)網(wǎng)絡(luò)中的神經(jīng)元群。這是一項非常嚴(yán)格的測試。

他們將自己創(chuàng)建的計算模型稱為「controller」,用這一模型控制另一個系統(tǒng)的輸出,也就是實驗中猴子大腦的神經(jīng)活動。

首先,他們利用從該計算模型中獲得的信息創(chuàng)建了特定的圖像。這些圖像與自然圖像存在很大的差別,如下圖所示。

研究人員利用深度神經(jīng)網(wǎng)絡(luò)模型合成的圖像。

研究人員將這些圖像展示給實驗中的猴子,觀察圖像是否可以強烈激活他們選擇的特定腦神經(jīng)元。

實驗結(jié)果表明,這些圖像可以強烈激活他們選擇的特定腦神經(jīng)元。也就是說,他們利用自己創(chuàng)建的人工神經(jīng)系統(tǒng)成功控制了真實神經(jīng)系統(tǒng)的活動。

實驗步驟

過去幾年里,DiCarlo 及其他人開發(fā)出了基于人工神經(jīng)網(wǎng)絡(luò)的視覺系統(tǒng)模型。每個網(wǎng)絡(luò)開始時具有一個包含模型神經(jīng)元或節(jié)點的任意架構(gòu),這些不同強度(也可稱權(quán)重)的神經(jīng)元或節(jié)點彼此之間可以相互連接。

隨后,研究者在一個擁有 100 多萬張圖像的庫中訓(xùn)練這些模型。當(dāng)研究者向模型展示每張圖像,并給圖像中最突出的物體添加標(biāo)簽(如飛機或椅子等)時,模型通過改變其連接強度來學(xué)習(xí)識別物體。

雖然很難準(zhǔn)確確定模型如何實現(xiàn)這種識別,但 DiCarlo 及其同事之前已經(jīng)證實了這些模型中的「神經(jīng)元」產(chǎn)生的活動模式與動物視覺皮層對同一圖像的反應(yīng)非常相似。

研究者設(shè)計了幾個閉環(huán)的神經(jīng)生理學(xué)實驗:在將模型神經(jīng)元與每個記錄的大腦神經(jīng)位點匹配之后,他們使用模型合成了全新的「controller」圖像。接下來,他們將這些圖像展示給每個目標(biāo),以測試模型控制目標(biāo)神經(jīng)元的能力。

在一項測試中,研究人員讓模型嘗試控制每個大腦神經(jīng)元,使其激活程度超過其平時觀察到的最大激活水平。他們發(fā)現(xiàn),模型生成的合成刺激成功地驅(qū)動 68% 的神經(jīng)位點超出了它們的自然觀察激活水平。

在一項更加嚴(yán)格的測試中,研究人員試圖生成能夠最大限度地控制一個神經(jīng)元的圖像,同時保持附近神經(jīng)元的活躍度非常低,這是一項更加困難的任務(wù)。

但這沒有難倒他們。對于測試的大多數(shù)神經(jīng)元,研究人員能夠增強目標(biāo)神經(jīng)元的活躍度,而周圍神經(jīng)元的活躍度幾乎沒有增加。

接下來,研究者利用這些非自然合成的 controller 圖像來測試模型預(yù)測大腦反應(yīng)的能力是否可以適用于這些全新的圖像。結(jié)果表明,模型非常準(zhǔn)確,預(yù)測到了 54% 的圖像誘發(fā)的大腦反應(yīng)模式,不過這還不夠完美。

「此前,模型已經(jīng)能夠預(yù)測神經(jīng)對其他未見過的刺激的反應(yīng),」Bashivan 表示?!高@里主要的不同之處在于我們又往前走了一步,即利用模型控制神經(jīng)元達到我們想要的狀態(tài)?!?/p>

為了達到這一目標(biāo),研究人員首先在計算模型中創(chuàng)建了大腦 V4 視覺區(qū)域神經(jīng)元到節(jié)點的一對一映射。他們通過向動物和模型展示圖像,并比較它們對相同圖像的反應(yīng)來實現(xiàn)這一目的。V4 區(qū)有數(shù)百萬個神經(jīng)元,但在這項研究中,研究人員每次只創(chuàng)建 5~40 個神經(jīng)元的映射。

「一旦搞清楚了每個神經(jīng)元的分工,模型就能對神經(jīng)元做出預(yù)測。」DiCarlo 表示。

研究人員開始研究能否利用這些預(yù)測來控制視覺皮層單個神經(jīng)元的活動。他們用到的第一種控制叫做「stretching」,包括展示一幅將會控制某個特定神經(jīng)元的圖像。

研究人員發(fā)現(xiàn),當(dāng)他們向動物展示這些由模型創(chuàng)建的非常規(guī)「合成」圖像時,目標(biāo)神經(jīng)元的確做出了預(yù)期的反應(yīng)。平均而言,這些神經(jīng)元對合成圖像的反應(yīng)要比它們看到用于訓(xùn)練模型的自然圖像時活躍 40% 左右。這種控制方法也是首創(chuàng)性的。

「實驗數(shù)據(jù)收集和計算建模分開進行是神經(jīng)科學(xué)的一個普遍趨勢,這使得模型驗證非常少,因此缺乏可量化的進展。我們的工作使這一『閉環(huán)』方法」重獲生機,將模型預(yù)測和神經(jīng)測量都包含進來,這些對成功構(gòu)建和測試最接近大腦的模型至關(guān)重要,」Kar 表示。

用人工神經(jīng)網(wǎng)絡(luò)控制真實大腦,MIT的科學(xué)家做到了

圖 1:合成步驟概覽。A) 兩個受測控制場景的圖示。C) 神經(jīng)控制實驗具體步驟。D) 猴子 M(黑色)、N(紅色)和 S(藍色)的神經(jīng)位點感受野。其中 C 展示了神經(jīng)控制實驗的四個步驟:在大量標(biāo)注自然圖像上訓(xùn)練神經(jīng)網(wǎng)絡(luò),以優(yōu)化其參數(shù),然后保持不變;將 ANN「神經(jīng)元」映射到每個記錄的 V4 神經(jīng)位點;使用得到的可微模型合成「controller」圖像,用于 single-site 或群體控制;將這些圖像指定的發(fā)光模式應(yīng)用于受試者的視網(wǎng)膜,衡量神經(jīng)位點的控制水平。

證明用人工神經(jīng)網(wǎng)絡(luò)理解真實神經(jīng)網(wǎng)絡(luò)的可行性

實驗結(jié)果表明,當(dāng)前這些模型與大腦非常類似,可用于控制動物的腦狀態(tài)。James DiCarlo 稱,該研究還有助于確定這些模型的有用性,而這引起了它們是否可以精確模擬視覺皮層工作的激烈爭論。

他還說道:「人們對這些模型是否可以理解視覺系統(tǒng)提出了質(zhì)疑。拋卻學(xué)術(shù)意義上的爭論,我們證實了這些模型已經(jīng)足夠強大,能夠促成一項重要的新應(yīng)用。無論你是否理解該模型的工作原理,從這層意義上來說已經(jīng)很有用了?!?/p>

「他們做到的這一點真的很棒。就好像那副理想的圖像突然抓住了那個神經(jīng)元的注意力。那個神經(jīng)元突然找到了它一直以來尋找的刺激,」匹茲堡大學(xué)生物工程學(xué)副教授 Aaron Batista 表示。「這個想法非常了不起,將其變?yōu)楝F(xiàn)實更加了不起。*這可能是用人工神經(jīng)網(wǎng)絡(luò)理解真實神經(jīng)網(wǎng)絡(luò)迄今為止最有力的證明*?!?/p>

研究成果有望用于治療抑郁癥

研究者表示,對于那些想要研究不同神經(jīng)元如何相互作用和如何連接的神經(jīng)科學(xué)家來說,這種控制可能有用。在遙遠的未來,這種方法有可能在治療抑郁癥等情緒障礙中發(fā)揮作用。目前,研究者正在研究將他們的模型擴展至為杏仁體提供養(yǎng)料的顳下皮層,而杏仁體又涉及到情緒處理。

Bashivan 表示:「如果我們有一個優(yōu)秀的神經(jīng)元模型,它可以體驗情緒或引發(fā)不同種類的失調(diào),我們就可以使用該模型控制神經(jīng)元,來幫助緩解失調(diào)狀況。」

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 網(wǎng)絡(luò)
    +關(guān)注

    關(guān)注

    14

    文章

    7597

    瀏覽量

    89113
  • 計算
    +關(guān)注

    關(guān)注

    2

    文章

    451

    瀏覽量

    38847
  • 神經(jīng)
    +關(guān)注

    關(guān)注

    0

    文章

    46

    瀏覽量

    12532

原文標(biāo)題:用人工神經(jīng)網(wǎng)絡(luò)控制真實大腦,MIT的科學(xué)家做到了

文章出處:【微信號:AItists,微信公眾號:人工智能學(xué)家】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計的。然而,數(shù)據(jù)科學(xué)中常用的神經(jīng)網(wǎng)絡(luò)作為
    的頭像 發(fā)表于 01-09 10:24 ?229次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及
    的頭像 發(fā)表于 07-10 15:20 ?1265次閱讀

    神經(jīng)網(wǎng)絡(luò)控制的優(yōu)勢與挑戰(zhàn)

    神經(jīng)網(wǎng)絡(luò)控制是一種利用人工神經(jīng)網(wǎng)絡(luò)對復(fù)雜系統(tǒng)進行建模和控制的方法。它在許多領(lǐng)域得到了廣泛的應(yīng)用,
    的頭像 發(fā)表于 07-09 09:47 ?704次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的案例分析

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)作為深度學(xué)習(xí)領(lǐng)域的重要分支,自20世紀(jì)80年代以來一直是人工智能領(lǐng)域的研究熱點。其靈感來源于生物神經(jīng)網(wǎng)絡(luò),通
    的頭像 發(fā)表于 07-08 18:20 ?875次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型包含哪些層次

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)的計算模型,具有自適應(yīng)、自學(xué)習(xí)、泛化能力強等特點。本文將詳細介紹人工
    的頭像 發(fā)表于 07-05 09:17 ?682次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型的分類有哪些

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANNs)是一種模擬人腦神經(jīng)元網(wǎng)絡(luò)的計算模型,它在許多領(lǐng)域,如圖像識別、語音識別、自然語言處理、預(yù)測分析等有著廣泛的應(yīng)用。本文將
    的頭像 發(fā)表于 07-05 09:13 ?1326次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的工作原理和基本特征

    通過模擬大腦神經(jīng)網(wǎng)絡(luò)處理、記憶信息的方式來進行信息處理,是現(xiàn)代神經(jīng)科學(xué)研究成果基礎(chǔ)上提出的一種非線性、自適應(yīng)信息處理系統(tǒng)。人工神經(jīng)網(wǎng)絡(luò)在工程與學(xué)術(shù)界被廣泛應(yīng)用,成為涉及
    的頭像 發(fā)表于 07-04 13:08 ?1760次閱讀

    人工智能和人工神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

    人工智能是一門研究如何使計算機模擬人類智能行為的學(xué)科。它起源于20世紀(jì)40年代,當(dāng)時計算機科學(xué)家們開始嘗試開發(fā)能夠模擬人類思維過程的計算機程序。人工智能的目標(biāo)是通過計算機程序?qū)崿F(xiàn)對人類智能的模擬,包括感知、學(xué)習(xí)、推理、規(guī)劃、交
    的頭像 發(fā)表于 07-04 09:39 ?1396次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)是什么

    人工智能神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)的計算模型,其結(jié)構(gòu)和功能非常復(fù)雜。 引言 人工智能神經(jīng)網(wǎng)絡(luò)是一種模擬人腦
    的頭像 發(fā)表于 07-04 09:37 ?651次閱讀

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系是什么

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系是密不可分的。神經(jīng)網(wǎng)絡(luò)人工智能的一種重要實現(xiàn)方式,而人工智能則是神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:25 ?1271次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:12 ?1323次閱讀

    神經(jīng)網(wǎng)絡(luò)算法的基本原理

    年代,當(dāng)時科學(xué)家們開始研究人腦的工作原理。1943年,Warren McCulloch和Walter Pitts提出了一種簡單的神經(jīng)網(wǎng)絡(luò)模型,即MP模型,它由一系列邏輯門組成,可以模擬神經(jīng)元的興奮和抑制狀態(tài)。1958年,F(xiàn)ran
    的頭像 發(fā)表于 07-03 09:44 ?1066次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的含義和用途是

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)而構(gòu)建的數(shù)學(xué)模型,它通過模擬人腦神經(jīng)元的連接和信息傳遞方式來實現(xiàn)對復(fù)雜數(shù)據(jù)的處
    的頭像 發(fā)表于 07-02 10:07 ?951次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的工作原理是什么

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)的計算模型,它通過大量的簡單計算單元(神經(jīng)元)和它們之間的連接(突觸)來實現(xiàn)對復(fù)
    的頭像 發(fā)表于 07-02 10:06 ?1395次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的模型及其應(yīng)用有哪些

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,ANNs)是一種受生物神經(jīng)網(wǎng)絡(luò)啟發(fā)的計算模型,它通過模擬人腦神經(jīng)元的連接和交互來實現(xiàn)對數(shù)據(jù)的學(xué)習(xí)和處理。自20世紀(jì)4
    的頭像 發(fā)表于 07-02 10:04 ?1164次閱讀
    主站蜘蛛池模板: 国产 亚洲 另类 欧美 在线 | 韩国伦理电影在线神马网 | 亚洲午夜精品aaa级久久久久 | 欧美另类极品videosbest | 999久久免费高清热精品 | 男人吃奶摸下弄进去好爽 | 天天槽任我槽免费 | 亚洲高清中文字幕 | 免费看国产精品麻豆 | 亚洲薄码区| 9988电影网| 九九精彩视频在线观看视频 | 精品福利一区 | 老湿影院色情a | 国产高清视频免费最新在线 | 天天爽夜夜爽8888视频精品 | 捏奶动态图吃奶动态图q | 欧美大片免费观看 | 电影果冻传媒在线播放 | 战狼4在线观看完免费完整版 | 亚洲精品电影久久久影院 | av淘宝 在线观看 | 国产精品久久久久影院色 | 暖暖日本手机免费完整版在线观看 | 亚洲片在线观看 | 亚洲大片在线观看 | 99在线观看免费视频 | cctv官网 | 亚洲免费观看在线视频 | 男人天堂2018亚洲男人天堂 | 亚洲欧美日韩中字视频三区 | 精品国产免费观看久久久 | 亚洲国产精品无码中文字幕 | 99热只有这里有精品 | 蜜臀色欲AV无人A片一区 | 大香网伊人久久综合网2020 | 国产h视频在线观看网站免费 | 久久综合色超碰人人 | 亚州免费一级毛片 | 恋夜直播午夜秀场最新 | 国内外成人免费在线视频 |