色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

100行Python代碼 輕松搞定神經網絡

電子工程師 ? 來源:fqj ? 2019-05-05 08:47 ? 次閱讀

tensorflow,pytorch這類深度學習庫來寫一個神經網絡早就不稀奇了。

可是,你知道怎么用python和numpy來優雅地搭一個神經網絡嘛?

現如今,有多種深度學習框架可供選擇,他們帶有自動微分、基于圖的優化計算和硬件加速等各種重要特性。對人們而言,似乎享受這些重要特性帶來的便利已經是理所當然的事兒了。但其實,瞧一瞧隱藏在這些特性下的東西,能更好的幫助你理解這些網絡究竟是如何工作的。

所以今天,文摘菌就來手把手教大家搭一個神經網絡。原料就是簡單的python和numpy代碼!

符號說明

在計算反向傳播時, 我們可以選擇使用函數符號、變量符號去記錄求導過程。它們分別對應了計算圖中的邊和節點來表示它們。

給定R^n→R和x∈R^n, 那么梯度是由偏導?f/?j(x)組成的n維行向量

如果f:R^n→R^m和x∈R^n,那么Jacobian矩陣是下列函數組成的一個m×n的矩陣。

100行Python代碼 輕松搞定神經網絡

對于給定的函數f和向量a和b如果a=f(b)那么我們用?a/?b表示Jacobian矩陣,當a是實數時則表示梯度

鏈式法則

給定三個分屬于不同向量空間的向量a∈A及c∈C和兩個可微函數f:A→B及g:B→C使得f(a)=b和g(b)=c,我們能得到復合函數的Jacobian矩陣是函數f和g的jacobian矩陣的乘積:

100行Python代碼 輕松搞定神經網絡

這就是大名鼎鼎的鏈式法則。提出于上世紀60、70年代的反向傳播算法就是應用了鏈式法則來計算一個實函數相對于其不同參數的梯度的。

要知道我們的最終目標是通過沿著梯度的相反方向來逐步找到函數的最小值 (當然最好是全局最小值), 因為至少在局部來說, 這樣做將使得函數值逐步下降。當我們有兩個參數需要優化時, 整個過程如圖所示:

100行Python代碼 輕松搞定神經網絡

反向模式求導

假設函數fi(ai)=ai+1由多于兩個函數復合而成,我們可以反復應用公式求導并得到:

100行Python代碼 輕松搞定神經網絡

可以有很多種方式計算這個乘積,最常見的是從左向右或從右向左。

如果an是一個標量,那么在計算整個梯度的時候我們可以通過先計算?an/?an-1并逐步右乘所有的Jacobian矩陣?ai/?ai-1來得到。這個操作有時被稱作VJP或向量-Jacobian乘積(Vector-Jacobian Product)。

又因為整個過程中我們是從計算?an/?an-1開始逐步計算?an/?an-2,?an/?an-3等梯度到最后,并保存中間值,所以這個過程被稱為反向模式求導。最終,我們可以計算出an相對于所有其他變量的梯度。

100行Python代碼 輕松搞定神經網絡

相對而言,前向模式的過程正相反。它從計算Jacobian矩陣如?a2/?a1開始,并左乘?a3/?a2來計算?a3/?a1。如果我們繼續乘上?ai/?ai-1并保存中間值,最終我們可以得到所有變量相對于?a2/?a1的梯度。當?a2/?a1是標量時,所有乘積都是列向量,這被稱為Jacobian向量乘積(或者JVP,Jacobian-Vector Product)。

100行Python代碼 輕松搞定神經網絡

你大概已經猜到了,對于反向傳播來說,我們更偏向應用反向模式——因為我們想要逐步得到損失函數對于每層參數的梯度。正向模式雖然也可以計算需要的梯度, 但因為重復計算太多而效率很低。

計算梯度的過程看起來像是有很多高維矩陣相乘, 但實際上,Jacobian矩陣常常是稀疏、塊或者對角矩陣,又因為我們只關心將其右乘行向量的結果,所以就不需要耗費太多計算和存儲資源。

在本文中, 我們的方法主要用于按順序逐層搭建的神經網絡, 但同樣的方法也適用于計算梯度的其他算法或計算圖。

深度神經網絡

在典型的監督機器學習算法中, 我們通常用到一個很復雜函數,它的輸入是存有標簽樣本數值特征的張量。此外,還有很多用于描述模型的權重張量。

損失函數是關于樣本和權重的標量函數, 它是衡量模型輸出與預期標簽的差距的指標。我們的目標是找到最合適的權重讓損失最小。在深度學習中, 損失函數被表示為一串易于求導的簡單函數的復合。所有這些簡單函數(除了最后一個函數),都是我們指的層, 而每一層通常有兩組參數: 輸入 (可以是上一層的輸出) 和權重。

而最后一個函數代表了損失度量, 它也有兩組參數: 模型輸出y和真實標簽y^。例如, 如果損失度量l為平方誤差, 則?l/?y為 2 avg(y-y^)。損失度量的梯度將是應用反向模式求導的起始行向量。

Autograd

自動求導背后的思想已是相當成熟了。它可以在運行時或編譯過程中完成,但如何實現會對性能產生巨大影響。我建議你能認真閱讀 HIPS autograd的 Python 實現,來真正了解autograd。

核心想法其實始終未變。從我們在學校學習如何求導時, 就應該知道這一點了。如果我們能夠追蹤最終求出標量輸出的計算, 并且我們知道如何對簡單操作求導 (例如加法、乘法、冪、指數、對數等等), 我們就可以算出輸出的梯度。

假設我們有一個線性的中間層f,由矩陣乘法表示(暫時不考慮偏置):

100行Python代碼 輕松搞定神經網絡

為了用梯度下降法調整w值,我們需要計算梯度?l/?w。這里我們可以觀察到,改變y從而影響l是一個關鍵。

每一層都必須滿足下面這個條件: 如果給出了損失函數相對于這一層輸出的梯度, 就可以得到損失函數相對于這一層輸入(即上一層的輸出)的梯度。

現在應用兩次鏈式法則得到損失函數相對于w的梯度:

100行Python代碼 輕松搞定神經網絡

相對于x的是:

100行Python代碼 輕松搞定神經網絡

因此, 我們既可以后向傳遞一個梯度, 使上一層得到更新并更新層間權重, 以優化損失, 這就行啦!

動手實踐

先來看看代碼, 或者直接試試Colab Notebook

我們從封裝了一個張量及其梯度的類(class)開始。

現在我們可以創建一個layer類,關鍵的想法是,在前向傳播時,我們返回這一層的輸出和可以接受輸出梯度和輸入梯度的函數,并在過程中更新權重梯度。

然后, 訓練過程將有三個步驟, 計算前向傳遞, 然后后向傳遞, 最后更新權重。這里關鍵的一點是把更新權重放在最后, 因為權重可以在多個層中重用,我們更希望在需要的時候再更新它。

class Layer: def __init__(self): self.parameters = [] def forward(self, X): """ Override me! A simple no-op layer, it passes forward the inputs """ return X, lambda D: D def build_param(self, tensor): """ Creates a parameter from a tensor, and saves a reference for the update step """ param = Parameter(tensor) self.parameters.append(param) return param def update(self, optimizer): for param in self.parameters: optimizer.update(param)

標準的做法是將更新參數的工作交給優化器, 優化器在每一批(batch)后都會接收參數的實例。最簡單和最廣為人知的優化方法是mini-batch隨機梯度下降。

class SGDOptimizer(): def __init__(self, lr=0.1): self.lr = lr def update(self, param): param.tensor -= self.lr * param.gradient param.gradient.fill(0)

在此框架下, 并使用前面計算的結果后, 線性層如下所示:

class Linear(Layer): def __init__(self, inputs, outputs): super().__init__() tensor = np.random.randn(inputs, outputs) * np.sqrt(1 / inputs) self.weights = self.build_param(tensor) self.bias = self.build_param(np.zeros(outputs)) def forward(self, X): def backward(D): self.weights.gradient += X.T @ D self.bias.gradient += D.sum(axis=0) return D @ self.weights.tensor.T return X @ self.weights.tensor + self.bias.tensor, backward

接下來看看另一個常用的層,激活層。它們屬于點式(pointwise)非線性函數。點式函數的 Jacobian矩陣是對角矩陣, 這意味著當乘以梯度時, 它是逐點相乘的。

class ReLu(Layer): def forward(self, X): mask = X > 0 return X * mask, lambda D: D * mask

計算Sigmoid函數的梯度略微有一點難度,而它也是逐點計算的:

class Sigmoid(Layer): def forward(self, X): S = 1 / (1 + np.exp(-X)) def backward(D): return D * S * (1 - S) return S, backward

當我們按序構建很多層后,可以遍歷它們并先后得到每一層的輸出,我們可以把backward函數存在一個列表內,并在計算反向傳播時使用,這樣就可以直接得到相對于輸入層的損失梯度。就是這么神奇:

class Sequential(Layer): def __init__(self, *layers): super().__init__() self.layers = layers for layer in layers: self.parameters.extend(layer.parameters) def forward(self, X): backprops = [] Y = X for layer in self.layers: Y, backprop = layer.forward(Y) backprops.append(backprop) def backward(D): for backprop in reversed(backprops): D = backprop(D) return D return Y, backward

正如我們前面提到的,我們將需要定義批樣本的損失函數和梯度。一個典型的例子是MSE,它被常用在回歸問題里,我們可以這樣實現它:

def mse_loss(Yp, Yt): diff = Yp - Yt return np.square(diff).mean(), 2 * diff / len(diff)

就差一點了!現在,我們定義了兩種層,以及合并它們的方法,下面如何訓練呢?我們可以使用類似于scikit-learn或者Keras中的API

class Learner(): def __init__(self, model, loss, optimizer): self.model = model self.loss = loss self.optimizer = optimizer def fit_batch(self, X, Y): Y_, backward = self.model.forward(X) L, D = self.loss(Y_, Y) backward(D) self.model.update(self.optimizer) return L def fit(self, X, Y, epochs, bs): losses = [] for epoch in range(epochs): p = np.random.permutation(len(X)) X, Y = X[p], Y[p] loss = 0.0 for i in range(0, len(X), bs): loss += self.fit_batch(X[i:i + bs], Y[i:i + bs]) losses.append(loss) return losses

這就行了!如果你跟隨著我的思路,你可能就會發現其實有幾行代碼是可以被省掉的。

這代碼能用不?

現在可以用一些數據測試下我們的代碼了。

X = np.random.randn(100, 10)w = np.random.randn(10, 1)b = np.random.randn(1)Y = X @ W + Bmodel = Linear(10, 1)learner = Learner(model, mse_loss, SGDOptimizer(lr=0.05))learner.fit(X, Y, epochs=10, bs=10)

100行Python代碼 輕松搞定神經網絡

我一共訓練了10輪。

我們還能檢查學到的權重和真實的權重是否一致。

print(np.linalg.norm(m.weights.tensor - W), (m.bias.tensor - B)[0])> 1.848553648022619e-05 5.69305886743976e-06

好了,就這么簡單。讓我們再試試非線性數據集,例如y=x1x2,并且再加上一個Sigmoid非線性層和另一個線性層讓我們的模型更復雜些。像下面這樣:

X = np.random.randn(1000, 2)Y = X[:, 0] * X[:, 1]losses1 = Learner( Sequential(Linear(2, 1)), mse_loss, SGDOptimizer(lr=0.01)).fit(X, Y, epochs=50, bs=50)losses2 = Learner( Sequential( Linear(2, 10), Sigmoid(), Linear(10, 1) ), mse_loss, SGDOptimizer(lr=0.3)).fit(X, Y, epochs=50, bs=50)plt.plot(losses1)plt.plot(losses2)plt.legend(['1 Layer', '2 Layers'])plt.show()

100行Python代碼 輕松搞定神經網絡

比較單一層vs兩層模型在使用sigmoid激活函數的情況下的訓練損失。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4779

    瀏覽量

    101102
  • 代碼
    +關注

    關注

    30

    文章

    4823

    瀏覽量

    68965
  • python
    +關注

    關注

    56

    文章

    4807

    瀏覽量

    84996

原文標題:100行Python代碼,輕松搞定神經網絡

文章出處:【微信號:BigDataDigest,微信公眾號:大數據文摘】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    【PYNQ-Z2試用體驗】神經網絡基礎知識

    python語言,可以很輕松地實現復雜的數學運算,降低編程難度。下一篇文章,將通過具體代碼,演示基于神經網絡的手寫圖形識別。
    發表于 03-03 22:10

    卷積神經網絡如何使用

    卷積神經網絡(CNN)究竟是什么,鑒于神經網絡在工程上經歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
    發表于 07-17 07:21

    【案例分享】ART神經網絡與SOM神經網絡

    今天學習了兩個神經網絡,分別是自適應諧振(ART)神經網絡與自組織映射(SOM)神經網絡。整體感覺不是很難,只不過一些最基礎的概念容易理解不清。首先ART神經網絡是競爭學習的一個代表,
    發表于 07-21 04:30

    如何構建神經網絡

    原文鏈接:http://tecdat.cn/?p=5725 神經網絡是一種基于現有數據創建預測的計算系統。如何構建神經網絡神經網絡包括:輸入層:根據現有數據獲取輸入的層隱藏層:使用反向傳播優化輸入變量權重的層,以提高模型的預測
    發表于 07-12 08:02

    不可錯過!人工神經網絡算法、PID算法、Python人工智能學習等資料包分享(附源代碼

    為了方便大家查找技術資料,電子發燒友小編為大家整理一些精華資料,讓大家可以參考學習,希望對廣大電子愛好者有所幫助。 1.人工神經網絡算法的學習方法與應用實例(pdf彩版) 人工神經 網絡
    發表于 09-13 16:41

    如何提升AI算法速度 打造接近人腦規模的神經網絡

    SET的靈感來自生物網絡以及特定神經網絡,而這些特定神經網絡之所以運行效率高有三個特征,包括網絡連接性相對較低、神經中樞稀少以及路徑短。
    發表于 07-06 09:32 ?1057次閱讀

    Python從頭實現一個神經網絡來理解神經網絡的原理1

    有個事情可能會讓初學者驚訝:神經網絡模型并不復雜!『神經網絡』這個詞讓人覺得很高大上,但實際上神經網絡算法要比人們想象的簡單。 這篇文章完全是為新手準備的。我們會通過用Python
    的頭像 發表于 02-27 15:05 ?732次閱讀
    用<b class='flag-5'>Python</b>從頭實現一個<b class='flag-5'>神經網絡</b>來理解<b class='flag-5'>神經網絡</b>的原理1

    Python從頭實現一個神經網絡來理解神經網絡的原理2

    有個事情可能會讓初學者驚訝:神經網絡模型并不復雜!『神經網絡』這個詞讓人覺得很高大上,但實際上神經網絡算法要比人們想象的簡單。 這篇文章完全是為新手準備的。我們會通過用Python
    的頭像 發表于 02-27 15:06 ?656次閱讀
    用<b class='flag-5'>Python</b>從頭實現一個<b class='flag-5'>神經網絡</b>來理解<b class='flag-5'>神經網絡</b>的原理2

    Python從頭實現一個神經網絡來理解神經網絡的原理3

    有個事情可能會讓初學者驚訝:神經網絡模型并不復雜!『神經網絡』這個詞讓人覺得很高大上,但實際上神經網絡算法要比人們想象的簡單。 這篇文章完全是為新手準備的。我們會通過用Python
    的頭像 發表于 02-27 15:06 ?764次閱讀
    用<b class='flag-5'>Python</b>從頭實現一個<b class='flag-5'>神經網絡</b>來理解<b class='flag-5'>神經網絡</b>的原理3

    Python從頭實現一個神經網絡來理解神經網絡的原理4

    有個事情可能會讓初學者驚訝:神經網絡模型并不復雜!『神經網絡』這個詞讓人覺得很高大上,但實際上神經網絡算法要比人們想象的簡單。 這篇文章完全是為新手準備的。我們會通過用Python
    的頭像 發表于 02-27 15:06 ?726次閱讀
    用<b class='flag-5'>Python</b>從頭實現一個<b class='flag-5'>神經網絡</b>來理解<b class='flag-5'>神經網絡</b>的原理4

    卷積神經網絡python代碼

    卷積神經網絡python代碼 ; 卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種可以在圖像處理和語音識別等領域中很好地應用的
    的頭像 發表于 08-21 16:41 ?1065次閱讀

    卷積神經網絡算法代碼python

    卷積神經網絡算法代碼python? 卷積神經網絡(Convolutional Neural Network,CNN)是深度學習中最為重要的算法之一。它在計算機視覺、自然語言處理、語音識
    的頭像 發表于 08-21 16:50 ?2451次閱讀

    卷積神經網絡算法代碼matlab

    卷積神經網絡算法代碼matlab 卷積神經網絡(Convolutional Neural Network,CNN)是一種深度學習網絡模型,其特點是具有卷積層(Convolutional
    的頭像 發表于 08-21 16:50 ?1246次閱讀

    cnn卷積神經網絡簡介 cnn卷積神經網絡代碼

    cnn卷積神經網絡簡介 cnn卷積神經網絡代碼 卷積神經網絡(Convolutional Neural Network,簡稱CNN)是目前深度學習領域中應用廣泛的一種
    的頭像 發表于 08-21 17:16 ?2762次閱讀

    如何使用Python進行神經網絡編程

    。 為什么使用PythonPython是一種廣泛使用的高級編程語言,以其易讀性和易用性而聞名。Python擁有強大的庫,如TensorFlow、Keras和PyTorch,這些庫提供了構建和訓練
    的頭像 發表于 07-02 09:58 ?448次閱讀
    主站蜘蛛池模板: 国产极品美女视频福利 | 国产午夜亚洲精品一区 | 蜜桃久久久亚洲精品成人 | 中文字幕 人妻熟女 | 亚洲精品久久久久一区二区三 | 亚洲欧美一区二区三区久久 | chinese野外男女free | 第九色区av天堂 | 久久99re热在线观看视频 | 酒色.com| 五月丁香啪啪. | 99视频偷窥在线精品国自产拍 | 国产在线精品一区二区在线看 | 亚洲综合视频 | 99国产精品成人免费视频 | 色偷偷亚洲男人天堂 | 午理论理影片被窝 | 美女的隐私蜜桃传媒免费看 | 91香蕉福利一区二区三区 | 欧美成人免费一区二区三区不卡 | 在线观看亚洲AV无码每日更新 | 超碰免费视频公开97 | 青青青伊人| 亚洲精品在看在线观看 | 永久久久免费人妻精品 | 毛片免费在线 | 一级毛片直接看 | 熟女人妻-蜜臀AV-首页 | 久久久久国产精品美女毛片 | 久久国产精品高清一区二区三区 | 亚洲熟妇无码乱子AV电影 | 高清不卡伦理电影在线观看 | 最近中文字幕2018MV高清在线 | 久久综合中文字幕佐佐木希 | 99久久99久久免费精品蜜桃 | 久久精品国产欧美成人 | 女人张开腿让男人桶爽免 | 与嫂子同居的日子在线观看 | 夜色55夜色66亚洲精品网站 | 野花日本免费完整版高清版动漫 | 欧美日韩精品一区二区三区四区 |