機(jī)器學(xué)習(xí)算法那么多,一個(gè)問(wèn)題的解決往往可能有好多算法的選擇。
這些算法有什么特點(diǎn)呢?特定的場(chǎng)景需要選擇哪一算法呢?
我們?yōu)榇蠹曳g了Quora上大牛們最喜歡的機(jī)器學(xué)習(xí)算法,一起欣賞。
Carlos Guestrin,亞馬遜計(jì)算機(jī)科學(xué)機(jī)器學(xué)習(xí)教授,Dato公司ceo及創(chuàng)始人 (Dato原名GraphLab,大數(shù)據(jù)分析云服務(wù)平臺(tái))
我并沒(méi)有最喜歡的機(jī)器學(xué)習(xí)算法,但有一些比較青睞的,比如:
最簡(jiǎn)潔的算法:感知器算法(Perceptron)。這種算法是Rosenblatt和他的同事們?cè)?0世紀(jì)50年代創(chuàng)造的。這個(gè)算法非常簡(jiǎn)單,但它是現(xiàn)在一些最成功的分類器的基礎(chǔ),包括支持SVM和邏輯回歸,它們都使用了隨機(jī)梯度下降法。感知器算法的收斂性證明是我在ML中見(jiàn)過(guò)的最優(yōu)雅的數(shù)學(xué)過(guò)程之一。
最有用的算法: Boosting,特別是提升決策樹(shù)。這種方法比較直觀,可以結(jié)合許多簡(jiǎn)單模型來(lái)構(gòu)建高精度機(jī)器學(xué)習(xí)模型。Boosting是機(jī)器學(xué)習(xí)中最具實(shí)踐性的方法,在工業(yè)中得到了廣泛的引用,可以用它處理相當(dāng)廣泛的數(shù)據(jù)類型,在數(shù)據(jù)規(guī)模上也沒(méi)有太多限制。在實(shí)際過(guò)程中的提高樹(shù)的可伸縮性應(yīng)用上,我建議考慮XGBoost。Boosting的證明過(guò)程也是非常優(yōu)雅的。
卷土重來(lái)的算法:卷積神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)。這種神經(jīng)網(wǎng)絡(luò)算法在20世紀(jì)80年代早期開(kāi)始流行。從90年代后期到2000年代后期,大家對(duì)這種算法的興趣逐漸減弱,但在過(guò)去的5年里,這種算法出人意料的卷土重來(lái)。特別是,卷積神經(jīng)網(wǎng)絡(luò)建立了深度學(xué)習(xí)模型的核心,在計(jì)算機(jī)視覺(jué)和語(yǔ)音識(shí)別方面有巨大影響力。
最優(yōu)美的算法:動(dòng)態(tài)規(guī)劃(Dynamic programming)(比如維特比, forward-backward, 變量消除以及belief propagation算法)。
在計(jì)算機(jī)科學(xué)中動(dòng)態(tài)規(guī)劃是最優(yōu)雅的一種算法,是通過(guò)搜索一個(gè)指數(shù)型大的空間來(lái)找到可選的解決方案。這種方法在機(jī)器學(xué)習(xí)中已經(jīng)得到了各種應(yīng)用,特別是圖形模型,如隱馬爾可夫模型、貝葉斯網(wǎng)絡(luò)和馬爾可夫網(wǎng)絡(luò)。
無(wú)與倫比的基準(zhǔn):鄰近算法。當(dāng)我們想顯示我們的曲線比別人好時(shí),一個(gè)辦法就是引入一個(gè)基準(zhǔn)來(lái)證明自己的方法更加準(zhǔn)確。鄰近算法實(shí)現(xiàn)起來(lái)非常簡(jiǎn)單。我們總是覺(jué)得自己的算法可以輕易的超過(guò)鄰近算法,但實(shí)際上很難!如果我們有足夠的數(shù)據(jù),鄰近算法非常有效果,在實(shí)踐中也是非常有用的。
Fran?ois Chollet,谷歌深度學(xué)習(xí)研究專家,Keras作者
矩陣分解——一個(gè)簡(jiǎn)單而美麗的降維方法,而降維是認(rèn)知的本質(zhì)。
矩陣分解在推薦系統(tǒng)得到了很大應(yīng)用。另一個(gè)應(yīng)用是分解特征的互信息對(duì)的矩陣,或更為常見(jiàn)的逐點(diǎn)互信息。我從2010年開(kāi)始處理視頻數(shù)據(jù)的時(shí)候就開(kāi)始用了。可用于特征提取、計(jì)算單詞嵌入、計(jì)算標(biāo)簽嵌入(我最近的論文的主題就是這個(gè)),等等。
在卷積中,矩陣分解是圖像、視頻的無(wú)監(jiān)督特征的優(yōu)秀的提取器。但有個(gè)問(wèn)題,它從根本上來(lái)說(shuō)是比較淺的算法。一旦監(jiān)督標(biāo)簽可用,深度神經(jīng)網(wǎng)絡(luò)將很快超越它。
Yann LeCun,F(xiàn)acebook人工智能研究院主管,紐約大學(xué)教授
Backprop,反向傳播算法。
Ian Goodfellow,谷歌大腦高級(jí)研究員
我喜歡dropout,在一個(gè)簡(jiǎn)單模型中構(gòu)建一個(gè)指數(shù)型的大集成是非常優(yōu)雅的。在近似集成預(yù)測(cè)結(jié)果時(shí),權(quán)重除以2的技巧效果很好。我不太理解在深度非線性模型中其效果如此好的理論原因,但它的效果真的很好。
Claudia Perlich,Dstillery首席科學(xué)家,紐約大學(xué)客座教授
毫無(wú)疑問(wèn),我最喜歡邏輯回歸,包括隨機(jī)梯度下降、特征散列以及懲罰。
在深度學(xué)習(xí)如此火爆的時(shí)代,我的這個(gè)回答肯定讓人費(fèi)解,來(lái)告訴你們?cè)颍?/p>
1995年到1998年,我使用神經(jīng)網(wǎng)絡(luò);1998年到2002年,我一般使用基于方法的樹(shù);從2002年以后,就開(kāi)始慢慢使用邏輯回歸了,還包括線性回歸、分量回歸、泊松回歸等。2003年,我在Machine Learning上發(fā)表了一篇文章,使用 35個(gè)數(shù)據(jù)集(在那時(shí)這樣的數(shù)據(jù)量還是比較大的)上,對(duì)比基于方法的樹(shù)、基于邏輯回歸分別得到的結(jié)果。
簡(jiǎn)要結(jié)論——如果信號(hào)噪聲比較高,那么決策樹(shù)效果更好。但如果有非常雜亂的問(wèn)題,最好的模型的AUC小于0.8,那么邏輯回歸的效果總是比決策樹(shù)好。最終結(jié)果在意料之中,如果信號(hào)太弱,高方差模型就會(huì)失效。
所以這個(gè)試驗(yàn)說(shuō)明了什么?我需要處理的問(wèn)題類型是比較雜亂的,并且可預(yù)測(cè)性低。一般都是處于隨機(jī)確定性(象棋??)的條件下,像所謂的股票市場(chǎng)。根據(jù)數(shù)據(jù)不同,不同問(wèn)題的可預(yù)測(cè)性也不同。這已經(jīng)不簡(jiǎn)單是算法問(wèn)題,而是對(duì)世界的概念表述。
我感興趣的大多數(shù)問(wèn)題非常類似于股市的某一個(gè)極端。深度學(xué)習(xí)在另一端效果非常好——比如判斷圖片中是否是一只貓。在不確定的問(wèn)題中,偏差權(quán)衡仍然經(jīng)常結(jié)束了更多的偏差,也就是,你希望得到一個(gè)簡(jiǎn)單的、非常受限的模型。這里就用到邏輯回歸了。我發(fā)現(xiàn),添加復(fù)雜特征來(lái)加強(qiáng)簡(jiǎn)單線性模型,比限制一個(gè)強(qiáng)大的高方差模型更容易。而每一次我贏過(guò)的數(shù)據(jù)挖掘比賽,我都使用了線性模型。
除了性能比較好,線性模型還比較可靠、需要的控制更少,不過(guò)還要用隨機(jī)梯度下降法和懲罰。這些是很重要的,因?yàn)樵诠I(yè)上,我們根本不可能花3個(gè)月的時(shí)間來(lái)建立一個(gè)完美的模型。
最后,在線性模型上,我可以更好的理解一切如何運(yùn)行。
Alex Smola,卡內(nèi)基梅隆大學(xué)教授,1-Page首席科學(xué)家
可能大家都最喜歡感知器算法,由它發(fā)展出其他很多重要的算法,比如:
核函數(shù)方法(只是轉(zhuǎn)換預(yù)處理)
深度網(wǎng)絡(luò)(只是增加了更多的層)
隨機(jī)梯度下降法(只改變目標(biāo)函數(shù))
學(xué)習(xí)理論(保證了更新)
感知器算法如下:
假設(shè)一個(gè)線性函數(shù)f(x)=?w,x?+b,我們要估計(jì)向量w和常數(shù)b,當(dāng)?shù)玫椒诸?時(shí),f為正數(shù),得到分類?1時(shí),f為負(fù)數(shù)。然后我們可以做如下步驟:
初始化w和b為零(或其他可能更好的值);
繼續(xù)遍歷(x,y),直到?jīng)]有錯(cuò)誤;
如果 yf(x)<0,那么更新 w+=yx,b+=y。
該算法是收斂的,所花時(shí)間長(zhǎng)短取決于問(wèn)題有多難,從技術(shù)上來(lái)講就是將正數(shù)和負(fù)數(shù)集合分開(kāi)的困難程度。但是解決所有的錯(cuò)誤更重要。
Xavier Amatriain,前ML研究人員,目前在Quora帶領(lǐng)工程師
我喜歡簡(jiǎn)單而靈活的算法。如果一定要選一個(gè),我最喜歡集成(Ensemble)算法,我個(gè)人認(rèn)為它是“大師級(jí)別”。無(wú)論我們從哪個(gè)算法開(kāi)始,總可以用集成算法來(lái)提高它。集成算法獲得了Netflix獎(jiǎng),經(jīng)常表現(xiàn)優(yōu)異,也相對(duì)容易理解、優(yōu)化和檢查。
但如果要選一個(gè)“超級(jí)算法”,我選另一個(gè)——邏輯回歸。邏輯回歸很簡(jiǎn)單,但很有效并且有彈性,可以用在很多地方,包括分類、排序。
Thorsten Joachims,康奈爾大學(xué)教授,主要研究人類行為的機(jī)器學(xué)習(xí)
我目前使用的學(xué)習(xí)算法并不是我最喜歡的,因?yàn)樗鼈兌加幸粋€(gè)缺陷。這些優(yōu)異又重要的機(jī)器學(xué)習(xí)算法中,都有個(gè)巨大的帕累托邊界。
事實(shí)上,基本的機(jī)器學(xué)習(xí)理論告訴我們,沒(méi)有一個(gè)單獨(dú)的機(jī)器學(xué)習(xí)算法可以很好的解決所有問(wèn)題。如果訓(xùn)練樣本相對(duì)比較少,又有非常高維的稀疏數(shù)據(jù)(例如按主題分類的文本),可以使用一個(gè)正規(guī)化的線性模型,比如SVM或邏輯回歸。但如果有大量的訓(xùn)練樣本與低維的稠密數(shù)據(jù)(如語(yǔ)音識(shí)別、視覺(jué)),可以使用深度網(wǎng)絡(luò)。
Ricardo Vladimiro,Miniclip 游戲分析和數(shù)據(jù)科學(xué)負(fù)責(zé)人
注:Miniclip,瑞士在線游戲公司,2015年被騰訊控股。
隨機(jī)森林。學(xué)習(xí)隨機(jī)森林對(duì)我來(lái)說(shuō)是個(gè)非常享受的過(guò)程。最后的總體效果也很有意義。我覺(jué)得決策樹(shù)實(shí)在是很可愛(ài)。對(duì)特征進(jìn)行Bootstrap經(jīng)常會(huì)讓我驚嘆。這真的很神奇。我覺(jué)得我對(duì)于隨機(jī)森林已經(jīng)有感情了,因?yàn)槲以谌绱硕潭痰臅r(shí)間內(nèi)學(xué)到了很多東西。
Ps:我知道我對(duì)決策樹(shù)的看法有點(diǎn)極端。
-
算法
+關(guān)注
關(guān)注
23文章
4627瀏覽量
93166 -
計(jì)算機(jī)
+關(guān)注
關(guān)注
19文章
7529瀏覽量
88415 -
機(jī)器學(xué)習(xí)
+關(guān)注
關(guān)注
66文章
8436瀏覽量
132889
原文標(biāo)題:Quora上的大牛們最喜歡哪種機(jī)器學(xué)習(xí)算法?
文章出處:【微信號(hào):BigDataDigest,微信公眾號(hào):大數(shù)據(jù)文摘】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論