色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

《深度學(xué)習(xí)500問(wèn)》通過(guò)問(wèn)答的形式對(duì)深度學(xué)習(xí)相關(guān)的各類(lèi)熱點(diǎn)問(wèn)題進(jìn)行梳理闡述

DPVg_AI_era ? 來(lái)源:未知 ? 作者:李倩 ? 2018-11-10 10:43 ? 次閱讀

近日,來(lái)自四川大學(xué)的畢業(yè)生在GitHub上創(chuàng)建了一個(gè)項(xiàng)目:《深度學(xué)習(xí)500問(wèn)》,通過(guò)問(wèn)答的形式對(duì)深度學(xué)習(xí)相關(guān)的各類(lèi)熱點(diǎn)問(wèn)題進(jìn)行梳理闡述,覆蓋范圍包括概率知識(shí)、線(xiàn)性代數(shù)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、計(jì)算機(jī)視覺(jué)等。這一項(xiàng)目用來(lái)幫助那些想了解深度學(xué)習(xí)的讀者,截止11月7日,這一項(xiàng)目已經(jīng)收到9000多個(gè)star。

近年來(lái),深度學(xué)習(xí)在語(yǔ)音、圖像、自然語(yǔ)言處理等領(lǐng)域都取得了非常不錯(cuò)的成果,自然而然地成為技術(shù)人員爭(zhēng)相學(xué)習(xí)的熱點(diǎn)。

為了幫助正在學(xué)習(xí)深度學(xué)習(xí)的伙伴們,川大的一名優(yōu)秀畢業(yè)生,在GitHub上創(chuàng)建了一個(gè)項(xiàng)目:《深度學(xué)習(xí)500問(wèn)》,通過(guò)問(wèn)答的形式對(duì)常用的概率知識(shí)、線(xiàn)性代數(shù)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、計(jì)算機(jī)視覺(jué)等熱點(diǎn)問(wèn)題進(jìn)行闡述,以幫助自己及有需要的讀者。全書(shū)分為15個(gè)章節(jié),近20萬(wàn)字。

截至11月7日,該項(xiàng)目已經(jīng)獲得了9571個(gè)「star」以及2416個(gè)「fork」(GitHub項(xiàng)目地址:https://github.com/scutan90/DeepLearning-500-questions)

雖然本書(shū)還未完結(jié),但還是值得一讀,下面我們?cè)敿?xì)介紹書(shū)中有哪些內(nèi)容:

第一章 數(shù)學(xué)基礎(chǔ)

本章主要講解了數(shù)學(xué)基礎(chǔ)知識(shí),不僅涵蓋了相關(guān)的基礎(chǔ)概念,還包括彼此之間的聯(lián)系,如標(biāo)量、向量、張量之間的聯(lián)系;張量和矩陣的區(qū)別,還有常見(jiàn)的概率分布:

此外,還講解了不同類(lèi)型的概率分布和統(tǒng)計(jì)學(xué)(期望、方差、協(xié)方差、相關(guān)數(shù))的相關(guān)基礎(chǔ)知識(shí)

第二章 機(jī)器學(xué)習(xí)基礎(chǔ)

本章為大家羅列了常見(jiàn)的算法以及常見(jiàn)分類(lèi)算法的優(yōu)缺點(diǎn)、分類(lèi)算法的評(píng)估用法、大數(shù)據(jù)與深度學(xué)習(xí)的關(guān)系等,第二章涵蓋的知識(shí)點(diǎn)雖然很多但卻十分全面。

第三章 深度學(xué)習(xí)基礎(chǔ)

本章開(kāi)始進(jìn)入主題,為了描述神經(jīng)網(wǎng)絡(luò),書(shū)中從最簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)說(shuō)起,然后層層深入,列舉了神經(jīng)網(wǎng)絡(luò)的常用模型結(jié)構(gòu),如何選擇一個(gè)深度學(xué)習(xí)開(kāi)發(fā)平臺(tái)等重點(diǎn)內(nèi)容,如神經(jīng)網(wǎng)絡(luò)常用的模型結(jié)構(gòu)如下:

第四章 經(jīng)典網(wǎng)絡(luò)

本章向大家介紹了幾種經(jīng)典網(wǎng)絡(luò),包括LeNet-5、AlexNet、可視化ZFNet-解卷積、GoogleNet的模型結(jié)構(gòu)及模型解讀等,如LeNet-5的模型結(jié)構(gòu)如下:

看了上面這些內(nèi)容,你是不是已經(jīng)迫不及待想深度讀一下這本未完結(jié)的書(shū)呢?或者你正從事該領(lǐng)域的工作,也可以幫助作者完善成書(shū)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:川大畢業(yè)極客創(chuàng)建項(xiàng)目《深度學(xué)習(xí)500問(wèn)》,GitHub獲星近萬(wàn)!

文章出處:【微信號(hào):AI_era,微信公眾號(hào):新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專(zhuān)門(mén)為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?791次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?458次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    :DE5Net_Conv_Accelerator 應(yīng)用場(chǎng)景 :面向深度學(xué)習(xí)的開(kāi)源項(xiàng)目,實(shí)現(xiàn)了AlexNet的第一層卷積運(yùn)算加速。 技術(shù)特點(diǎn) : 采用了Verilog語(yǔ)言進(jìn)行編程,與PCIe接口相集成,可以直接插入到
    的頭像 發(fā)表于 10-25 09:22 ?320次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?1084次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    的發(fā)展前景較為廣闊,但也面臨一些挑戰(zhàn)。以下是一些關(guān)于 FPGA 在深度學(xué)習(xí)中應(yīng)用前景的觀點(diǎn),僅供參考: ? 優(yōu)勢(shì)方面: ? 高度定制化的計(jì)算架構(gòu):FPGA 可以根據(jù)深度學(xué)習(xí)算法的特殊需
    發(fā)表于 09-27 20:53

    深度學(xué)習(xí)中的時(shí)間序列分類(lèi)方法

    的發(fā)展,基于深度學(xué)習(xí)的TSC方法逐漸展現(xiàn)出其強(qiáng)大的自動(dòng)特征提取和分類(lèi)能力。本文將從多個(gè)角度對(duì)深度學(xué)習(xí)在時(shí)間序列分類(lèi)中的應(yīng)用進(jìn)行綜述,探討常用
    的頭像 發(fā)表于 07-09 15:54 ?1102次閱讀

    深度學(xué)習(xí)中的無(wú)監(jiān)督學(xué)習(xí)方法綜述

    深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)領(lǐng)域的一個(gè)重要分支,近年來(lái)在多個(gè)領(lǐng)域取得了顯著的成果,特別是在圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域。然而,深度學(xué)習(xí)模型
    的頭像 發(fā)表于 07-09 10:50 ?880次閱讀

    深度學(xué)習(xí)與nlp的區(qū)別在哪

    方法,它通過(guò)模擬人腦的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),實(shí)現(xiàn)對(duì)數(shù)據(jù)的自動(dòng)特征提取和學(xué)習(xí)深度學(xué)習(xí)的核心是構(gòu)建多層的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),每一層都包含大量的神經(jīng)元,這些神經(jīng)元通過(guò)
    的頭像 發(fā)表于 07-05 09:47 ?1023次閱讀

    基于深度學(xué)習(xí)的小目標(biāo)檢測(cè)

    在計(jì)算機(jī)視覺(jué)領(lǐng)域,目標(biāo)檢測(cè)一直是研究的熱點(diǎn)和難點(diǎn)之一。特別是在小目標(biāo)檢測(cè)方面,由于小目標(biāo)在圖像中所占比例小、特征不明顯,使得檢測(cè)難度顯著增加。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,尤其是卷積神經(jīng)網(wǎng)絡(luò)(CNN
    的頭像 發(fā)表于 07-04 17:25 ?1028次閱讀

    深度學(xué)習(xí)的基本原理與核心算法

    處理、語(yǔ)音識(shí)別等領(lǐng)域取得了革命性的突破。本文將詳細(xì)闡述深度學(xué)習(xí)的原理、核心算法以及實(shí)現(xiàn)方式,并通過(guò)一個(gè)具體的代碼實(shí)例進(jìn)行說(shuō)明。
    的頭像 發(fā)表于 07-04 11:44 ?2387次閱讀

    深度學(xué)習(xí)常用的Python庫(kù)

    深度學(xué)習(xí)作為人工智能的一個(gè)重要分支,通過(guò)模擬人類(lèi)大腦中的神經(jīng)網(wǎng)絡(luò)來(lái)解決復(fù)雜問(wèn)題。Python作為一種流行的編程語(yǔ)言,憑借其簡(jiǎn)潔的語(yǔ)法和豐富的庫(kù)支持,成為了深度
    的頭像 發(fā)表于 07-03 16:04 ?690次閱讀

    深度學(xué)習(xí)模型訓(xùn)練過(guò)程詳解

    深度學(xué)習(xí)模型訓(xùn)練是一個(gè)復(fù)雜且關(guān)鍵的過(guò)程,它涉及大量的數(shù)據(jù)、計(jì)算資源和精心設(shè)計(jì)的算法。訓(xùn)練一個(gè)深度學(xué)習(xí)模型,本質(zhì)上是通過(guò)優(yōu)化算法調(diào)整模型參數(shù),
    的頭像 發(fā)表于 07-01 16:13 ?1443次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)深度學(xué)習(xí)無(wú)疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來(lái)了革命性的變化。然而,盡管它們都屬于機(jī)器學(xué)習(xí)的范疇,但
    的頭像 發(fā)表于 07-01 11:40 ?1509次閱讀

    深度解析深度學(xué)習(xí)下的語(yǔ)義SLAM

    隨著深度學(xué)習(xí)技術(shù)的興起,計(jì)算機(jī)視覺(jué)的許多傳統(tǒng)領(lǐng)域都取得了突破性進(jìn)展,例如目標(biāo)的檢測(cè)、識(shí)別和分類(lèi)等領(lǐng)域。近年來(lái),研究人員開(kāi)始在視覺(jué)SLAM算法中引入深度學(xué)習(xí)技術(shù),使得
    發(fā)表于 04-23 17:18 ?1351次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>下的語(yǔ)義SLAM

    為什么深度學(xué)習(xí)的效果更好?

    導(dǎo)讀深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)子集,已成為人工智能領(lǐng)域的一項(xiàng)變革性技術(shù),在從計(jì)算機(jī)視覺(jué)、自然語(yǔ)言處理到自動(dòng)駕駛汽車(chē)等廣泛的應(yīng)用中取得了顯著的成功。深度
    的頭像 發(fā)表于 03-09 08:26 ?668次閱讀
    為什么<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的效果更好?
    主站蜘蛛池模板: 最近的中文字幕2019国语| 蜜桃传媒视频| 极品 女神校花 露脸91| 美美哒免费影视8| 玩高中女同桌肉色短丝袜脚文| 一本道中文无码亚洲| 俄罗斯雏妓的BBB孩交| 久久久精品久久久久久| 午夜福利试看120秒体验区| 2017最新伦理伦理片67| 国产一区二区高清| 人人爽天天碰狠狠添| 中文字幕在线观看亚洲视频| 国产人A片在线乱码视频| 翘臀后进美女白嫩屁股视频| 永久免费观看视频| 国产精品一区二区免费| 日本午夜视频在线| 99热视频这里只有久久精品| 久久深夜视频| 一级am片欧美| 韩国精品韩国专区久久| 乡村教师电影版| 国产成人亚洲精品午夜国产馆| 秋霞影院福利电影| YELLOW视频在线观看最新| 美女厕所撒尿ass| 18黄女脱内衣| 麻豆精品无码久久久久久久久 | 亚洲精品无码国产爽快A片百度| 国产AV无码一二三区视频| 日韩一级精品久久久久| 成 人 动漫3d 在线看| 日本不卡不码高清免费| 把英语老师强奷到舒服动态图| 免费观看的毛片| 99亚洲精品自拍AV成人软件| 漂亮的保姆3集电影免费观看中文| jk制服喷水| 日本无吗高清| 俄罗斯bbbbbbbbb大片|