色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

LiFi有什么優勢?什么樣的光源可以用作LiFi可見光通信

wFVr_Hardware_1 ? 來源:未知 ? 作者:易水寒 ? 2018-10-14 12:00 ? 次閱讀

作為兼顧照明和通信的新技術,LiFi在追求高傳輸速率的同時,不能影響照明的質量和要求,尤其是在光源的研制上。LiFi的光源既要具備通信光源調制性能好、發射功率大和響應靈敏度高等優點,又要滿足照明光源高亮度、低功耗和輻射范圍廣等特點。

近年來,隨著白光發光二極管LED)技術的大力發展,可見光通信(Visible Light Communication,VLC)成為新一代無線通信技術的研究熱點之一。VLC也叫LiFi(Light Fidelity),2011年,來自愛丁堡大學的德國物理學家Hardal Hass教授在TED大會上發表了一個關于LiFi技術的演講,首次將“VLC”稱為“LiFi”。

LiFi是一種基于光(可見光波段)的新興無線通信技術,結合了光的照明功能和數據通信功能,如圖1所示。LiFi是在不影響LED照明的同時,將信號調制在LED光源上,通過快速開關產生人眼無法感知的高頻閃爍信號來傳送數據。

LiFi的優勢

相比于當前主流的WiFi通信技術,LiFi有如下優勢:

(1)容量方面,無線電波的頻譜很擁擠,而可見光的頻譜寬度(約400THz)比無線電波多10000倍;

(2)效率方面,無線電波基站的效率只有5%,大多數能量只是消耗在基站的冷卻上,而LiFi的數據可以并行傳輸,同時提高效率;

(3)實用性方面,無線電波只是在基站中獲取,不能在飛機上、手術室或者加油站使用WiFi,而全球的每個燈都可容易地接入LiFi熱點;

(4)安全性方面,無線電波很容易被侵入,而可見光不可以穿墻,甚至窗簾,提供了網絡的隱私安全。

作為兼顧照明和通信的新技術,LiFi在追求高傳輸速率的同時,不能影響照明的質量和要求,尤其是在光源的研制上。LiFi的光源既要具備通信光源調制性能好、發射功率大和響應靈敏度高等優點,又要滿足照明光源高亮度、低功耗和輻射范圍廣等特點。

LiFi光源選擇

1、LED

目前LiFi技術采用的光源大多數是白光LED,很大一部分的原因得益于LED技術的快速發展。而白光LED的實現方式主要有:藍色LED芯片激發黃綠色熒光粉轉換成白光(PC-LED)、紫外光或紫外LED激發三原色熒光粉產生白光和紅、綠、藍3種LED芯片封裝在一起混合產生白光(RGB-LED)。現階段商用的白光LED產品根據光譜成分的不同,主要分為兩大類:PC-LED和RGB-LED,兩類白光LED的光譜如圖2所示。

LED的調制帶寬決定了通信系統的信道容量和傳輸速率,研究LED器件的調制特性是提升新型LiFi系統性能的關鍵問題之一。LED調制帶寬的定義是當LED輸出的交流光功率下降到某一參考頻率值的50%時(-3dB)的頻率。由于PC-LED的黃色熒光粉光譜部分的光電響應比較滯后,如圖3所示,導致LiFi光源的調制帶寬限制在幾個兆赫茲以內,從而限制了整個系統的通信速率,即使在接收端采用藍色濾波片也未能明顯改善該光源的缺陷。

因此,越來越多的LiFi研究將光源轉向RGB LED,它能提供較高的調制帶寬,在3種顏色的光波上用波分復用的方式提高信道容量,調制不同的數據并行傳輸,并在接收端通過各顏色的濾波片分別接收3種顏色,有效提高發送效率。但是RGB-LED中不同顏色的LED對于輸出光通有不同的工作溫度依賴性,為了實現工作溫度獨立的色點,需要對每個單色LED的反饋循環和驅動電流進行單獨控制,這樣對器件的制備帶來了較高的成本和復雜的調制電路。

LED的調制帶寬受響應速率限制,而響應速率又受載流子壽命的影響。除了設計調制電路,降低RC(resistance-times-capacitance)延時之外,常規提高器件調制帶寬的方法是增加電子空穴的輻射復合速率,減少載流子自發輻射壽命。常用載流子復合ABC模型如公式(1)所示。

式中,N表示發光有源層的載流子濃度,單位為cm-3,A表示Shockley-Read-Hall(SRH)介質缺陷復合系數,B表示自發輻射(雙分子)系數,C表示Auger復合系數,BN2表示自發輻射速率。通過增加注入載流子濃度來減少載流子自發輻射壽命,而增加載流子濃度的方法有加大注入電流和Delta摻雜。大電流下,注入載流子濃度增加,因而激子復合幾率增加,輻射復合載流子壽命降低,電光轉換快速響應。Delta摻雜技術也實現了載流子的大量注入,從而降低了載流子壽命,實現相同電流密度下調制帶寬的提高。

載流子濃度的變化會影響到LED的內量子效率,如公式(2)所示:

式中,εrad是內量子效率。如表1所示,其中A、B、C的取值選取文獻中實驗的賦值,而理論的常規賦值中Auger復合系數比實驗得到的結果小了4個數量級,可能的原因是雜質和聲子作為中間介質參與Auger復合過程,使得C值實際中很大。另外一種可能是droop效應是由載流子溢出等作用的結果,與Auger輻射無關。

由載流子ABC模型能夠獲得測試設備很難測量的重要電光特性,如載流子濃度-內量子效率曲線,如圖4所示。在理論值的計算上,內量子效率漸漸趨于100%,但是實際中LED器件的內量子效率會出現上升到峰值再下降的droop效應,并且輸出光通量與注入電流的關系也會有droop效應。LED的調制通常發生在工作區,在飽和區進行調制會帶來很差的信噪比,所以要控制好注入電流的范圍。

2、LD(激光二極管)

由于研究人員不滿足LED調制達到的數據傳輸速率,LiFi的首次提出者HardalHass教授用激光二極管替換了現有的LED,利用激光器的高能量與高光效,傳輸數據的速率可以比LED快10倍。激光照明可以混合不同波長的光產生白色光,類似于RGBLED。雖然基于LED的LiFi可達到10Gb/s的數據傳輸速率,可以改善WiFi中7Gb/s的數據傳輸速率上限,但是激光傳輸數據的速率可以很容易超出100Gb/s。最新的報道顯示,美國亞利桑那州立大學電子、計算機和能源工程學院的研發團隊研制出納米級別的白光激光器,其可以更加便利地用作LiFi光源。

在通信方面,激光二極管相比于LED,具有更快的響應速度、可以直接進行調制和耦合效率高等優點。對于普通的電注入式半導體激光器,當注入電流超過某一值時,LD可以發射受輸入電流控制的調制光,其調制特性如圖5所示,該點電流稱為閾值電流,閾值電流以上部分直到飽和區都屬于LD的工作區,而調制范圍最好在線性區域內進行,所以降低器件的閾值電流,獲得較大的調制工作區顯得很重要。

閾值電流密度如公式(3)所示

式中,Jth是閾值電流密度;e是電子元電荷;d是有源層厚度;Iinj是注入電流;N’是透明載流子濃度;αm和αi分別是鏡面損耗和光學吸收損耗;Γg0是最大的模式增益;B和C分別是輻射復合系數和Auger復合系數。

垂直腔面發射激光器(Vertical-Cavity Surface-Emitting Lasers,VCSELs)就具有低閾值、寬調制和高光電轉換效率等優勢,美國PrincetonOptronics公司研制出集成多個VCSELs列陣的激光照明模塊,連續輸出功率超過650W,如圖6所示。但是隨著注入電流的增加,高功率的VCSELs就會激發出多重橫模,導致器件用于通訊光源時誤碼率增大,所以要對高功率的VCSELs器件的出射模式進行偏振選擇。

半導體激光器的光輸出能夠直接調制,最常用的激光器輸出調制是控制流經器件的電流進行幅度調制或脈沖調制。激光二極管的調制帶寬B<ω0,其中ω0是類共振頻率,而在閾值之上,調制帶寬可以近似寫作公式(4)

式中,τ是載流子壽命;τS是光子壽命;J是注入電流密度;J,是透明電流密度;σ是自發輻射因子;Γ是光限制因子,而

其中,c是光速,n是折射率。如果在LD的激射區域忽略自發輻射,即σ=0,從公式(4)發現調制帶寬和注入電流密度就是正相關的線性關系,但是實際中的半導體激光器有droop效應,而且除了主模之外,邊模也有很強的弛豫振蕩。所以在微腔的微小體積中,自發輻射因子是較大的,普通激光器的σ=10-5~10-4,而微腔激光器的σ可能增大到0.1以上,甚至接近于1。

盡管LiFi的光源可以選擇激光二極管,而且2014年諾貝爾物理學獎獲得者之一中村修二也在預言未來激光照明可能要取代LED照明,但是當前的主流照明新技術還是推廣性價比較高、技術相對成熟的LED,并且對于LiFi光源的特點,研發高亮度、高效率和高速調制的LED器件方向可以更快地推動LiFi技術的商業化。

LiFi光源的顏色

與WiFi只是關注通信性能的提升不同,LiFi的照明系統必須要考慮在提升通信性能的同時保證照明的質量。所以LiFi的光源不管是LED還是LD,都是要輸出白光,而白光的顏色質量對于照明來說是非常重要的。

LED燈具顏色特征參數可以由光譜功率分布(SPD)來計算。SPD是相對于光波長的輸出強度分布的數學表達,可以提供關于光譜組分的詳細信息。在LiFi系統中,隨著LED的驅動電流變化,SPD會有偏差。偏差的SPD能導致感知的色點漂移并且會影響顏色的顯色特性,而LiFi中的特殊調制技術會更加容易受顏色質量退化的影響。通過用SPD模型測量驅動電流變化帶來的SPD偏差,從而可以評價LiFi調制的顏色質量。

但是用SPD模型表征LiFi的顏色質量有很多缺點:模型中需要大量的擬合參數只能通過LED測試的經驗獲得;SPD模型設計是建立在相對靜止的條件,不能解釋LiFi在高頻電流振蕩下的情況;很難用一個SPD模型來適用于所有的LED類型,例如不能解釋PC-LED中的熒光粉材料產生的額外影響。另一方面可以檢測LiFi在工作條件下的實時顏色特性,對于高亮度LED產品,LED的制造商需要提供不同驅動電流和調制頻率下的顏色數據,如SPD、顏色坐標和顯色指數(CRI)。

因為LiFi在傳輸數據或者空閑狀態時需要提供足夠亮度的無閃爍照明服務,所以LiFi設備需要具備閃爍去除和亮度調節的功能。在IEEE發布的IEEEPAR1789《LED照明閃爍的潛在健康影響(草案)》中采用了波動深度對閃爍問題進行評價。而LiFi的光源調制頻率至少是每秒數百萬次,所以LiFi光源的閃爍是屬于無風險級別的。在亮度調節方面,除了OOK(開關鍵控)和VPPM(可變脈沖位置調制),還有CSK(色漂鍵控)調節。

2011年9月,規定了傳輸速度最高為95Mbit/s的可見光通信國際標準IEEE802.15.7制定完成,而且標準制定委員會的首要任務是推行“照明第一、通信第二”。

標準中的物理層PHYⅠ和Ⅱ分別支持OOK調節與VPPM調節,而物理層PHYⅢ采用CSK調制,支持多光源帶寬。將可見光劃分為7段光帶,用3位bit標識不同的光帶ID號,CSK根據光帶ID號將數據調制在不同波長的光波上并行傳輸,提高光譜利用率,通過選擇顏色的ID標識改變組合,達到亮度調節的目的。對于LED光源,物理層PHYⅢ僅工作在RGB-LED器件下,并且適合短幀發送,所以采用CSK調節的LiFi光源可以選擇RGB-LED或者RGBLD,適合用于室內通信。

LiFi系統的光源布局

LiFi以其獨特的優點可以廣泛地應用于:智能照明、車輛交通、醫院、辦公室、飛機上、國防安全、水下通信、室內定位和危險環境中(如礦井、電廠和加油站等)。尤其是室內定位,美國的ByteLight公司和國內的華策光通信都已經開發出基于白光LED的室內定位系統,能夠實現LiFi的單向傳輸,用于室內的信息推送和定位服務。

但是室內LiFi系統面臨著許多的技術難題,比如在帶來安全性的同時如果光線被擋住了,信號就會斷掉;LiFi的雙向數據傳輸問題等。HardalHass教授也認為LiFi不會取代WiFi,對于室內通信,LiFi可以作為WiFi的良好補充,只是在某些無線電波受限的場所,LiFi有其不錯的應用空間。由于照明和防止陰影效應影響等原因,需要在室內安裝多個LED燈,因而光源的合理布局是影響照明和系統性能的關鍵因素。

為了滿足室內照明的要求,光源的布局不僅要使得室內的照度和照度均勻度滿足相應的標準要求,而且要有利于人的活動安全和舒適。光源要選擇高光效、合適色溫、長壽命和可靠性的產品。室內的照明布局需要考慮基礎照明、重點照明、裝飾照明和應急照明的要求。

考慮到LiFi系統中不同路徑引起的碼間干擾、室內人員走動和物理陰影效應對通信系統的影響,在照顧到重點照明部分的LiFi通信的同時,可以采用OFDM(正交頻分復用)方案提高LiFi系統的整體性能和實現帶寬資源的有效利用。比如基于PC-LED的LiFi系統,采用OFDM調制技術可以通過濾除響應速度較慢的熒光成分,拓展了調制帶寬,還可以對抗多徑效應,實現高速數據傳播和通信,但是這樣的系統是否滿足照明的均勻性還尚未得到證實。

總結

作為相對于WiFi的一種通信技術,LiFi也受到人們越來越多的關注和研究。本文從LiFi的光源要求出發,分別從當前光源選擇、光源的顏色和光源布局3個方面來闡述LiFi光源的研究情況。

在LiFi的光源選擇上,從LED器件的載流子注入角度分析了影響LED調制特性的因素。目前來看,RGB-LED相對于PC-LED有很好的數據傳輸速率,但是需要降低成本,簡化電路設計。對于激光二極管用于LiFi光源的情況,從閾值電流以上的工作區方面分析了半導體激光器的調制特性。

在LiFi的光源顏色上,分析了SPD模型和CSK調制對LiFi光源顏色質量的影響。在LiFi光源的布局上,不僅要通過OFDM調制來降低LiFi系統碼間干擾,提升數據傳輸速率,而且要注意室內照明的均勻性問題。

隨著高亮度、高效率和高速調制的LED器件的研發深入,基于白光LED的LiFi技術會越來越成熟,這會給LED帶來新的發展機遇,正如中村修二所說,LiFi可能會成為LED的又一殺手锏。另外隨著激光照明的研究不斷推進,未來是否激光照明會在LiFi技術中取代LED,也非常值得人們期待。

本文轉載自《光通訊網》

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • led
    led
    +關注

    關注

    242

    文章

    23337

    瀏覽量

    662236
  • 通信技術
    +關注

    關注

    20

    文章

    1140

    瀏覽量

    92316
  • LiFi
    +關注

    關注

    13

    文章

    184

    瀏覽量

    60158

原文標題:Lifi,什么樣的光源才能用作可見光通信

文章出處:【微信號:Hardware_10W,微信公眾號:硬件十萬個為什么】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    可見光在電磁波譜中的位置

    高頻,電磁波譜包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。每種電磁波都有其獨特的特性和應用。 二、可見光的定義和特性 可見光是指人眼可以感知的電磁波,波長范圍在380
    的頭像 發表于 01-20 16:38 ?181次閱讀

    解析AMR設計關鍵要素:傳感器、可見光通信驅動器、電源方案等

    自主移動機器人設計涉及各種重要器件,例如電機控制、傳感器、電源、照明和通信器件等。上一篇推文“AMR電機控制方案超強整理”中,我們介紹了電機控制方案,本文將繼續介紹傳感器方案、可見光通信驅動器、電源
    的頭像 發表于 01-11 15:14 ?909次閱讀

    六博光電推出水下光通信實驗與仿真教學平臺

    、保密性提出了更高的要求,因此近些年水下光通信技術發展非常迅速。很多大學院校已經開通了水下光通信/可見光通信相關的課程。六博光電一直致力于無線光通信、
    的頭像 發表于 12-18 18:10 ?255次閱讀
    六博光電推出水下<b class='flag-5'>光通信</b>實驗與仿真教學平臺

    LiFi:適用于無線光通信的TI高速產品

    電子發燒友網站提供《LiFi:適用于無線光通信的TI高速產品.pdf》資料免費下載
    發表于 08-28 10:59 ?0次下載
    <b class='flag-5'>LiFi</b>:適用于無線<b class='flag-5'>光通信</b>的TI高速產品

    PHOTONIS可見光 - 近紅外相機介紹

    可見光和近紅外 (VIS/NIR) 技術發展迅速,涵蓋了從監視到工業和科學領域的廣泛應用。Exosens 旗下的 Photonis 部門走在這一進步的最前沿,以其在可見光技術領域的專業知識和提供前列
    的頭像 發表于 08-13 06:20 ?375次閱讀

    WDM系統和光通信哪些區別

    WDM(Wavelength Division Multiplexing,波分復用)系統和光通信是兩個密切相關但又有所區別的概念。光通信是一種利用光波作為載波進行信息傳輸的通信技術,而WDM則是
    的頭像 發表于 08-09 14:18 ?823次閱讀

    一文解讀激光通信技術的應用

    。光纖通信是利用光纖傳輸光信號的通信方式。今天的光學應用為各位光學人帶來的是關于激光通信的內容,興趣的朋友們可以看看!激光是一種方向性極好
    的頭像 發表于 07-05 15:21 ?2109次閱讀
    一文解讀激<b class='flag-5'>光通信</b>技術的應用

    水下光通信都能應用于哪些場景呢?

    機30系列、水下光通信機50系列、水下光通信機75系列、深海高速激光通信機、紫外光通信設備、可見光水下光功率計等設備,此外還可根據客戶要求進
    的頭像 發表于 07-02 10:24 ?524次閱讀
    水下<b class='flag-5'>光通信</b>都能應用于哪些場景呢?

    紅外光轉可見光,革新可見光通信未來

    ,通過控制和改變光的波長,科學家可以實現多種應用。頻率轉換:指改變光的波長。上轉換是一種頻率轉換技術,通過增加光的頻率(減少波長)將紅外光轉換為可見光。下轉換則相反
    的頭像 發表于 06-26 08:11 ?1069次閱讀
    紅外光轉<b class='flag-5'>可見光</b>,革新<b class='flag-5'>可見光通信</b>未來

    晶能光電與復旦大學合作研究用于可見光通信的紅色發射微型發光二極管

    近日,復旦大學和晶能光電合作課題組關于硅基InGaN紅光Micro-LED在多色顯示器和高速可見光通信方面的應用研究成果
    的頭像 發表于 05-06 10:52 ?1371次閱讀
    晶能光電與復旦大學合作研究用于<b class='flag-5'>可見光通信</b>的紅色發射微型發光二極管

    UVLED冷光源固化機在光通信上應用

    隨著UVLED技術的不斷發展,UVLED冷光源固化機的應用行業也越來越廣泛,光通信行業就是UVLED冷光源固化機的主要應用行業之一。對于光通信UVLED冷
    的頭像 發表于 04-17 11:47 ?735次閱讀
    UVLED冷<b class='flag-5'>光源</b>固化機在<b class='flag-5'>光通信</b>上應用

    可見光通信技術三大特性

    光在大氣信道中沿直線傳播,無法射頻信號一穿透物理障礙物。因此,可見光通信的范圍是可控的,且不容易被竊聽或截取,因此應用于室內私人物聯網通信、及涉密部門信息傳輸中具有很好的通信安全性。
    發表于 04-08 11:29 ?557次閱讀

    Li-Fi可見光通信系統組成工作原理

    由于在光譜中可見光對人體是無害的,而且在照明中廣泛使用,所以 Li-Fi 也被稱為可見光通信(Visible Light Communication, VLC),可見光通信是一項基于白光 LED 的新興無線
    發表于 03-04 14:36 ?1577次閱讀
    Li-Fi<b class='flag-5'>可見光通信</b>系統組成工作原理

    光通信的未來:多業務光端機的優勢與應用場景

    隨著科技的進步和人們對信息傳輸速度需求的不斷提高,光通信作為一種高速、高效的通信方式,正逐漸成為未來通信領域的主流。而多業務光端機,作為光通信領域的關鍵設備,憑借其獨特的
    的頭像 發表于 02-23 14:09 ?1015次閱讀

    紫外可見光光度計使用步驟 紫外可見光光度計怎么用

    驟:準備工作 在使用紫外可見光光度計之前,需要進行一些準備工作,確保儀器和試劑的狀態良好,從而獲得準確可靠的實驗結果。 1.1 儀器準備 首先,確保紫外可見光光度計正常運轉。檢查儀器是否通電,并檢查燈泡或光源是否正常工
    的頭像 發表于 02-18 11:42 ?1.4w次閱讀
    主站蜘蛛池模板: 午夜在线观看免费完整直播网| 亚洲精品动漫免费二区| 精品AV无码一二三区视频| 国产亚洲精品免费视频| 三级黄在线| 亚洲无吗精品AV九九久久| 国产福利视频在线观看福利| 久久999视频| 人成午夜免费视频| 亚洲mv在线观看| SM脚奴调教丨踩踏贱奴| 美女穿丝袜被狂躁动态图| 伊人久久大香线蕉综合高清| 精品国产九九| 伊人久久免费| 老师在讲桌下边h边讲课| 最新国产三级在线不卡视频| 美国一级黄色| videosgrati欧美另类| 日本xxxx裸体xxxx| 国产精品18久久久久久欧美| 亚洲AV国产精品无码精| 久久不射电影网| 999视频精品全部免费观看| 国产最新精品亚洲2021不卡| 门事件快播| 毛片大全网站| YELLOW视频直播在线观看高清| 日韩中文字幕欧美在线视频| 国产精品18久久久久久白浆.| 亚洲AV无码乱码国产麻豆穿越| 久久www免费人成_看片高清| 97国产露脸精品国产麻豆| 亲女乱h文小兰第一次| 在线精品国精品国产不卡| 国产99精品视频| 无遮挡午夜男女XX00动态| 好姑娘社区在线视频| 在线亚洲视频无码天堂| 亲女乱h文小兰第一次| 国产午夜精品一区二区|