色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI在未來如何實(shí)現(xiàn)真正的“智能”?人工智能要繼續(xù)前進(jìn),到底要不要模仿大腦?

DPVg_AI_era ? 來源:未知 ? 作者:李倩 ? 2018-08-06 08:58 ? 次閱讀

AI在未來如何實(shí)現(xiàn)真正的“智能”?這個(gè)問題似乎遭遇瓶頸。目前深度學(xué)習(xí)對人類大腦的模擬仍然處于初級階段,是否應(yīng)該沿這條路繼續(xù)走下去?吳恩達(dá)認(rèn)為,通過深度學(xué)習(xí)模擬大腦,未來的AI能夠比人類更快地完成精神層面的任務(wù)。也有研究人員認(rèn)為,應(yīng)從大自然中尋找靈感,讓AI建立關(guān)于世界的“心理模型”。

現(xiàn)在,我們已經(jīng)將AI技術(shù)應(yīng)用在自動(dòng)駕駛和醫(yī)療上,甚至10多億中國公民的社會(huì)信用評分都可以依靠AI技術(shù),現(xiàn)在我們已經(jīng)在討論如何讓AI學(xué)會(huì)自己不會(huì)做的事情。AI技術(shù)曾經(jīng)僅僅是一個(gè)學(xué)術(shù)問題,而現(xiàn)在已經(jīng)成為高達(dá)數(shù)十億美元的人才和基礎(chǔ)設(shè)施的產(chǎn)業(yè),而且關(guān)系到人類的未來。

關(guān)于這個(gè)問題的討論焦點(diǎn)是,目前構(gòu)建AI的是否足夠。我們能夠通過對現(xiàn)有技術(shù)的調(diào)整,利用足夠強(qiáng)大的計(jì)算力,來實(shí)現(xiàn)被認(rèn)為僅存在于人和動(dòng)物身上的真正的“智能”?

關(guān)于這個(gè)問題,辯論的一方是“深度學(xué)習(xí)”的支持者 - 自2012年多倫多大學(xué)三位研究人員的一篇具有里程碑意義的論文以來,深度學(xué)習(xí)已經(jīng)大受歡迎。雖然它遠(yuǎn)非人工智能的唯一方法,但已經(jīng)證明了我們能夠?qū)崿F(xiàn)以前的技術(shù)無法實(shí)現(xiàn)的成就。

“深度學(xué)習(xí)”中的“深度”是指其網(wǎng)絡(luò)中人工神經(jīng)元的層數(shù)。生物學(xué)上的“神經(jīng)元”一樣,具有更多層神經(jīng)元的人工神經(jīng)系統(tǒng)能夠進(jìn)行更復(fù)雜的學(xué)習(xí)。

吳恩達(dá):模擬人腦,未來AI完成精神層面任務(wù)只需幾秒

要理解人工神經(jīng)網(wǎng)絡(luò),可以想象一下空間中的一堆點(diǎn),就像我們大腦中的神經(jīng)元一樣。調(diào)整這些點(diǎn)之間連接的強(qiáng)度,就是在大致模擬大腦學(xué)習(xí)時(shí)發(fā)生的事情。模擬結(jié)果產(chǎn)生一幅神經(jīng)連接圖,圖中包括達(dá)到期望結(jié)果(比如正確識(shí)別出圖像)的最佳途徑。

今天的深度學(xué)習(xí)系統(tǒng)還達(dá)不到我們的大腦的復(fù)雜度。它們充其量看起來就像視網(wǎng)膜的外表面,只有少數(shù)幾層神經(jīng)元對圖像進(jìn)行初始處理。

這種網(wǎng)絡(luò)不太可能勝任我們大腦能完成的所有任務(wù)。因?yàn)樗鼈儾⒉荒芟裾嬲摹爸悄堋鄙锬菢恿私馐澜纾跃W(wǎng)絡(luò)顯得很脆弱,容易造成混淆。比如,研究人員能夠只改變圖像中的單個(gè)像素,就可以成功欺騙流行的圖像識(shí)別算法

盡管存在局限性,深度學(xué)習(xí)還是為研發(fā)圖像和語音識(shí)別、機(jī)器翻譯和棋類游戲中擊敗人類的黃金標(biāo)準(zhǔn)軟件提供了強(qiáng)大動(dòng)力。深度學(xué)習(xí)是谷歌研發(fā)定制化AI芯片和這些利用這些芯片運(yùn)行的AI云服務(wù)的動(dòng)力,Nvidia的自動(dòng)駕駛汽車技術(shù)也是如此。

吳恩達(dá)

人工智能領(lǐng)域中最具影響力的人之一、曾在谷歌大腦工作并擔(dān)任百度前人工智能首席科學(xué)家的吳恩達(dá)表示,通過深度學(xué)習(xí),計(jì)算機(jī)應(yīng)該能夠完成普通人在一秒或幾秒內(nèi)就能完成的任何精神層面的任務(wù)。而且計(jì)算機(jī)的完成速度甚至可以比人類更快。

推進(jìn)AI需要從大自然中尋找靈感

而這場討論中同樣有研究人員持相反觀點(diǎn),比如Uber公司人工智能部門的前負(fù)責(zé)人、現(xiàn)紐約大學(xué)教授Gary Marcus認(rèn)為深度學(xué)習(xí)遠(yuǎn)不足以完成我們能夠完成的各種事情。他認(rèn)為,深度學(xué)習(xí)永遠(yuǎn)無法取代全部的白領(lǐng)工作,無法引領(lǐng)我們走向全自動(dòng)化的、“奢侈化共產(chǎn)主義”的輝煌未來。

Marcus博士表示,要獲得“通用智能”需要具備推理能力,能夠自己學(xué)習(xí),建立關(guān)于世界的心理模型,這些都超出了現(xiàn)在AI的能力。

“目前我們利用深度學(xué)習(xí)取得了很多里程碑式的成就,但這并不意味著深度學(xué)習(xí)是建立思維理論或抽象推理的正確工具。”馬庫斯博士說。

為了進(jìn)一步推進(jìn)人工智能,“我們需要從大自然中獲取靈感。”Marcus博士說。也就是說要建立其他類型的人工神經(jīng)網(wǎng)絡(luò),并在某些情況下為其提供與生俱來的預(yù)編程的知識(shí),就像所有生物都具備的天生本能一樣。

紐約大學(xué)教授Gary Marcus

研究人員還在努力讓AI建立關(guān)于世界的心理模型,一般嬰兒在一歲時(shí)就能建立這種模型了。因此,就算一個(gè)AI系統(tǒng)已經(jīng)見過一百萬張校車的圖片,但當(dāng)它第一次見到一輛翻車的校車時(shí),可能還是認(rèn)不出來。如果AI能夠構(gòu)建一個(gè)心理模型,其中包括校車的車輪、黃色底盤等,認(rèn)出翻車的校車可能就沒那么難了。

人工智能促進(jìn)協(xié)會(huì)(AAAI)前主席Thomas Dietterich表示,努力尋找其他類型人工智能的深度學(xué)習(xí)是很好的做法,但重要的是,不能在總體上忽視深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的神奇之處。

“對于機(jī)器學(xué)習(xí)研究來說,我們的目標(biāo)是看看能在多大程度上讓計(jì)算機(jī)系統(tǒng)從數(shù)據(jù)和經(jīng)驗(yàn)中學(xué)習(xí),而不是手工構(gòu)建這些系統(tǒng)。”Dietterich博士說,問題不在于人工智能中的先天知識(shí)不好,人類一開始就根本不知道自己掌握了哪些先天知識(shí)。

Duvenaud博士說:“原則上,我們在研究如何構(gòu)建未來的AI時(shí)不需要參考生物學(xué)。” 但他也表示,那些能夠成功實(shí)現(xiàn)以深度學(xué)習(xí)為重點(diǎn)的、更復(fù)雜的系統(tǒng)目前還沒有取得成功。

Marcus博士說,在弄清楚如何讓AI變得更智能、更強(qiáng)大之前,我們?nèi)员仨毾駻I系統(tǒng)中輸入大量現(xiàn)有的人類知識(shí)。也就是說,像自動(dòng)駕駛軟件這樣的AI系統(tǒng)中的許多“智能”根本就不是“人工”的。雖然很多企業(yè)需要在盡量多的真實(shí)道路上訓(xùn)練自動(dòng)駕駛車,但現(xiàn)在,使這些AI系統(tǒng)真正獲得自駕能力,仍然需要人工輸入大量的邏輯,這些邏輯反映了構(gòu)建和測試自動(dòng)駕駛車輛的工程師們做出的決策。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    31491

    瀏覽量

    270004
  • 神經(jīng)元
    +關(guān)注

    關(guān)注

    1

    文章

    363

    瀏覽量

    18496
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5512

    瀏覽量

    121434

原文標(biāo)題:吳恩達(dá):模擬人腦,未來AI執(zhí)行精神層面任務(wù)有望快過人類!

文章出處:【微信號(hào):AI_era,微信公眾號(hào):新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    人工智能和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    作者:DigiKey Editor 人工智能AI)已經(jīng)是當(dāng)前科技業(yè)最熱門的話題,且其應(yīng)用面涉及人類生活的各個(gè)領(lǐng)域,對于各個(gè)產(chǎn)業(yè)都帶來相當(dāng)重要的影響,且即將改變?nèi)祟?b class='flag-5'>未來發(fā)展的方方面面。本文將為您介紹
    的頭像 發(fā)表于 01-25 17:37 ?174次閱讀
    <b class='flag-5'>人工智能</b>和機(jī)器學(xué)習(xí)以及Edge <b class='flag-5'>AI</b>的概念與應(yīng)用

    嵌入式和人工智能究竟是什么關(guān)系?

    應(yīng)用場景。例如,智能家居領(lǐng)域,嵌入式系統(tǒng)可以控制各種智能設(shè)備,如智能燈泡、智能空調(diào)等,而人工智能
    發(fā)表于 11-14 16:39

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    驅(qū)動(dòng)科學(xué)創(chuàng)新》的第6章為我提供了寶貴的知識(shí)和見解,讓我對人工智能在能源科學(xué)中的應(yīng)用有了更深入的認(rèn)識(shí)。通過閱讀這一章,我更加堅(jiān)信人工智能未來能源科學(xué)領(lǐng)域中的重要地位和作用。同時(shí),我也意識(shí)到
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    。 4. 對未來生命科學(xué)發(fā)展的展望 閱讀這一章后,我對未來生命科學(xué)的發(fā)展充滿了期待。我相信,人工智能技術(shù)的推動(dòng)下,生命科學(xué)將取得更加顯著
    發(fā)表于 10-14 09:21

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    ,推動(dòng)科學(xué)研究的深入發(fā)展。 總結(jié) 通過閱讀《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章,我對AI for Science的技術(shù)支撐有了更加全面和深入的理解。我深刻認(rèn)識(shí)到AI
    發(fā)表于 10-14 09:16

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    ,無疑為讀者鋪設(shè)了一條探索人工智能AI)如何深刻影響并推動(dòng)科學(xué)創(chuàng)新的道路。閱讀這一章后,我深刻感受到了人工智能技術(shù)科學(xué)領(lǐng)域的廣泛應(yīng)用潛
    發(fā)表于 10-14 09:12

    risc-v人工智能圖像處理應(yīng)用前景分析

    、RISC-V人工智能圖像處理中的應(yīng)用案例 目前,已有多個(gè)案例展示了RISC-V人工智能圖像處理中的應(yīng)用潛力。例如: Esperanto技術(shù)公司 :該公司制造的首款高性能RISC-
    發(fā)表于 09-28 11:00

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學(xué) 不過好像都是要學(xué)的
    發(fā)表于 09-26 15:24

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個(gè)需要研究的課題,本書對ai4s基本原理和原則,方法進(jìn)行描訴,有利于總結(jié)經(jīng)驗(yàn),擬
    發(fā)表于 09-09 15:36

    名單公布!【書籍評測活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    大力發(fā)展AI for Science的原因。 第2章從科學(xué)研究底層的理論模式與主要困境,以及人工智能三要素(數(shù)據(jù)、算法、算力)出發(fā),對AI for Science的技術(shù)支撐進(jìn)行解讀。 第3章介紹了
    發(fā)表于 09-09 13:54

    報(bào)名開啟!深圳(國際)通用人工智能大會(huì)將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會(huì)暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會(huì)將在深圳國際會(huì)展中心(寶安)舉辦。大會(huì)以“魅力AI·無限未來”為主題,致力于打造全球通用
    發(fā)表于 08-22 15:00

    FPGA人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場可編程門陣列)人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個(gè)方面: 一、深度學(xué)習(xí)加速 訓(xùn)練和推理過程加速:FPGA可以用來加速深度學(xué)習(xí)的訓(xùn)練和推理過程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V2)

    https://t.elecfans.com/v/25653.html 人工智能 初學(xué)者完整學(xué)習(xí)流程實(shí)現(xiàn)手寫數(shù)字識(shí)別案例_Part1 13分59秒 https://t.elecfans.com/v
    發(fā)表于 05-10 16:46

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V1)

    ://t.elecfans.com/v/25653.html 人工智能 初學(xué)者完整學(xué)習(xí)流程實(shí)現(xiàn)手寫數(shù)字識(shí)別案例 28分55秒 https://t.elecfans.com/v/27184.html
    發(fā)表于 04-01 10:40

    嵌入式人工智能的就業(yè)方向有哪些?

    。 國內(nèi)外科技巨頭紛紛爭先入局,微軟、谷歌、蘋果、臉書等積極布局人工智能的同時(shí),國內(nèi)的BAT、華為、小米等科技公司也相繼切入到嵌入式人工智能的賽道。那么嵌入式AI可就業(yè)的方向有哪些呢
    發(fā)表于 02-26 10:17
    主站蜘蛛池模板: 亚洲伊人久久大香线蕉综合图片 | 久久久无码精品亚洲A片软件 | 高h浪荡文辣文神奇宝贝 | 日本孕妇大胆孕交 | 超碰在线视频97 | 偷拍国产精品在线播放 | 国产品无码一区二区三区在线 | 亚洲欧美自拍清纯中文字幕 | 7723日本高清完整版在线观看 | 91精品婷婷国产综合久久8 | 丰满的寡妇hd高清在线观看 | 偷窥国产亚洲免费视频 | 日韩一本在线 | 中文字幕日本在线mv视频精品 | 中文字幕乱码亚洲无线三区 | 成3d漫二区三区四区 | 在线播放午夜理论片 | 久久精品免费观看久久 | 18美女腿打开无遮软件 | 人与畜禽CROPROATION免费 人淫阁 | 天美传媒麻豆精品 | 国产美熟女乱又伦AV | 嗨嗨快播电影 | 国产午夜婷婷精品无码A片 国产午夜视频在永久在线观看 | 国产福利视频一区二区 | 日本视频中文字幕一区二区 | 永久免费精品影视网站 | 精品一二三区久久AAA片 | 国产色无码精品视频国产 | 99影视久久电影网久久看影院 | 国产亚洲精品精品精品 | 河南老太XXXXXHD| 沈芯语麻豆0076 视频 | 99久久99久久精品免费看子 | 久久超碰色中文字幕 | 99久久久国产精品免费调教 | 日本护士性生活 | 高清国产免费观看视频在线 | 97视频免费观看 | 在线视频中文字幕 | 国产乱国产乱老熟300部视频 |