色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

什么是神經(jīng)架構(gòu)搜索?機器學(xué)習(xí)自動化真能普及大眾嗎?

zhKF_jqr_AI ? 來源:未知 ? 作者:易水寒 ? 2018-07-19 15:36 ? 次閱讀

CMU和DeepMind的研究者最近發(fā)表了一篇有趣的論文——Differentiable Architecture Search (DARTS),提出了一種替代神經(jīng)架構(gòu)搜索的方法,目前是機器學(xué)習(xí)的熱門領(lǐng)域。去年,神經(jīng)架構(gòu)搜索被“捧”得很高,因為谷歌CEO桑德拉·皮查伊和谷歌AI的負責(zé)人杰夫·迪恩提出,神經(jīng)架構(gòu)搜索和大量的計算力對于機器學(xué)習(xí)的普及至關(guān)重要。于是媒體們對谷歌的這一工作進行了全面報道。

在今年3月舉辦的TensorFlow DevSummit大會上,杰夫·迪恩估計在未來,谷歌云可以用比目前高100倍的計算力替代人類機器學(xué)習(xí)專家。他將需要昂貴計算成本的神經(jīng)架構(gòu)搜索作為主要案例,解釋了為什么我們需要100倍計算力才能讓機器學(xué)習(xí)惠及更多人。

那么,到底什么是神經(jīng)架構(gòu)搜索?這是讓機器學(xué)習(xí)普及的關(guān)鍵嗎?這篇文章將重點解決這一問題。而在下篇文章中,我們會詳細了解谷歌的AutoML。神經(jīng)架構(gòu)搜索是AutoML的一部分,在其剛剛出現(xiàn)時同樣受到了熱烈的追捧。

目錄

什么是AutoML?

AutoML有多有用?

什么是神經(jīng)架構(gòu)搜索?

什么是DARTS?

神經(jīng)架構(gòu)搜索有什么用處?

除此之外還有什么方法能提高機器學(xué)習(xí)從業(yè)者的效率?

什么是AutoML?

AutoML這個術(shù)語曾被用來描述選擇機器學(xué)習(xí)模型或參數(shù)優(yōu)化的自動化方法。這些方法的所用的算法有很多種,例如隨機森林、梯度提升、神經(jīng)網(wǎng)絡(luò)等等。AutoML包括開源的AutoML庫、研討會、研究項目和比賽。初學(xué)者可能會感覺他們只是在為模型測試不同的參數(shù),將這一過程自動化可能會讓機器學(xué)習(xí)的過程更容易,同時還能提升有經(jīng)驗的從業(yè)者的速度。

AutoML庫有很多種,最“古老”的是AutoWEKA,于2013年發(fā)布,它可以自動選擇模型和參數(shù)。其他的庫包括auto-sklearn、H2O AutoML和TPOT。

AutoML有多有用?

AutoML提供了一種可以選擇模型、優(yōu)化超參數(shù)的方法。它同樣能用來評估某一問題所處的水平如何。那么這意味著數(shù)據(jù)科學(xué)家可以被替代嗎?目前還不行,因為我們需要考慮機器學(xué)習(xí)從業(yè)者實際的工作是什么。

對很多機器學(xué)習(xí)項目來說,選擇一個合適的模型只是搭建機器學(xué)習(xí)產(chǎn)品中的一部分。在上一篇文章中,我們說過如果參與者并不理解機器學(xué)習(xí)模型各部分之間是如何連接的,這一項目可能會失敗。我認為這一過程需要30多種不同的步驟,其中兩個非常費時,即數(shù)據(jù)清洗和模型訓(xùn)練。雖然AutoML可以幫助選擇模型和超參數(shù),但是仍需要關(guān)注其他數(shù)據(jù)專家的需要和現(xiàn)存的問題。

在下一篇文章中,我會提出一些AutoML的替代方法,能讓機器學(xué)習(xí)從業(yè)者工作得更高效。

什么是神經(jīng)架構(gòu)搜索?

神經(jīng)架構(gòu)搜索是AutoML最受人關(guān)注的部分,谷歌CEO桑德拉·皮查伊曾寫道:“設(shè)計神經(jīng)網(wǎng)絡(luò)非常耗費時間,并且需要一名專家將它限制在更小的科學(xué)和工程社區(qū)里。這就是我們創(chuàng)建AutoML的原因,證明了我們可以讓神經(jīng)網(wǎng)絡(luò)設(shè)計神經(jīng)網(wǎng)絡(luò)。”

他提到的“神經(jīng)網(wǎng)絡(luò)設(shè)計神經(jīng)網(wǎng)絡(luò)”是指神經(jīng)架構(gòu)搜索;通常強化學(xué)習(xí)或演化算法使用來設(shè)計新的神經(jīng)網(wǎng)絡(luò)架構(gòu)的。這非常有用,因為它能讓我們發(fā)現(xiàn)更復(fù)雜的架構(gòu),同時還能根據(jù)具體目標進行優(yōu)化調(diào)整。神經(jīng)架構(gòu)搜索通常需要大量計算力。

準確的說,神經(jīng)架構(gòu)搜索經(jīng)常包括學(xué)習(xí)類似圖層的東西,可以組合成重復(fù)的單元以創(chuàng)建一個神經(jīng)網(wǎng)絡(luò):

有關(guān)神經(jīng)架構(gòu)搜索的論文非常多,這里我們著重分析最近的幾篇:

AutoML開始進入人們的視野就是由于谷歌AI的研究者Quoc Le和Barret Zoph于2017年5月在谷歌I/O大會上發(fā)表的論文:Neural Architecture Search With Reinforcement Learning。該論文使用強化學(xué)習(xí)為CV領(lǐng)域CIFAR10和NLP中的Penn Tree Bank問題尋找新的結(jié)構(gòu),并達到了與現(xiàn)有架構(gòu)相似的結(jié)果。

地址:arxiv.org/pdf/1611.01578.pdf

Learning Transferable Architecture for Scalable Image Recognition中的NASNet。這一項目從較小數(shù)據(jù)集(CIFAR10)中尋找建造模塊,之后在大數(shù)據(jù)集(ImageNet)上搭建結(jié)構(gòu)。不過這一項目也需要大量計算,需要1800個GPU(相當(dāng)于用1個GPU訓(xùn)練5年的時間)才能學(xué)會架構(gòu)。

地址:ai.googleblog.com/2017/11/automl-for-large-scale-image.html

Regularized Evolution for Image Classifier Architecture Search中的AmoebaNet。這一研究比上一個NASNet更耗費計算力,需要3150個GPU(相當(dāng)于用1個GPU訓(xùn)練9年的時間)。AmoebaNet中包含從演化算法中訓(xùn)練來的單元,說明經(jīng)過進化的結(jié)構(gòu)可以達到甚至超越人類水平和強化學(xué)習(xí)圖像分類器。fast.ai對此進行了改進,學(xué)習(xí)進程加快同時改變了訓(xùn)練過程中圖像的尺寸后,AmoebaNet目前是在單一機器上訓(xùn)練ImageNet最便宜的方法。

地址:arxiv.org/abs/1802.01548

Efficient Neural Architecture Search(ENAS):該方法比之前提到的兩種方法都更節(jié)省計算力,重要的是,它比標準的神經(jīng)架構(gòu)搜索便宜1000倍。在單一GPU上訓(xùn)練只花了16個小時。

地址:arxiv.org/pdf/1802.03268.pdf

什么是DARTS?

可微分的結(jié)構(gòu)搜索(differentiable architecture search)是最近由CMU和DeepMind的研究人員發(fā)布的一種方法,它假設(shè)候選架構(gòu)是連續(xù)而不是離散的,利用基于梯度的方法比黑箱搜索更有效。

為了學(xué)習(xí)CIFAR10上的結(jié)構(gòu),DARTS只需要4個GPU,大大提升了效率。雖然還需要進一步研究,但這已經(jīng)為今后的研究指明了方向。

神經(jīng)架構(gòu)搜索有多有用?

在TensorFlow DevSummit上,杰夫·迪恩表示深度學(xué)習(xí)的一個重要部分正嘗試不同的結(jié)構(gòu)。這是他在演講中提到的唯一一個有關(guān)機器學(xué)習(xí)的觀點。

然而選擇模型只是復(fù)雜過程的一部分。大多數(shù)情況下,結(jié)構(gòu)選擇才是更難、更耗時或更重要的地方。目前,沒有證據(jù)表明每個新問題最好的方法是在自身結(jié)構(gòu)上建模。

像谷歌這樣致力于結(jié)構(gòu)設(shè)計和分享的機構(gòu)為我們提供了很重要的服務(wù)。但是基礎(chǔ)的結(jié)構(gòu)搜索方法只有一小部分研究者在基礎(chǔ)神經(jīng)架構(gòu)的設(shè)計上才需要使用到,我們可以直接用遷移學(xué)習(xí)得來的結(jié)構(gòu)。

除此之外還有什么方法能提高機器學(xué)習(xí)從業(yè)者的效率?

AutoML領(lǐng)域關(guān)注的核心問題即,如何讓模型選擇和超參數(shù)優(yōu)化自動化?然而自動化往往忽視了人類輸入的重要角色。而另一個重要問題是:人類如何與計算機合作,從而讓機器學(xué)習(xí)更有效呢?增強機器學(xué)習(xí)(augmented machine learning)是關(guān)注如何讓人與機器更好合作的話題,其中一個案例是Leslie Smith的leaning rate finder這篇論文,其中提到學(xué)習(xí)率是一個可以決定模型訓(xùn)練速度的超參數(shù),或者可以決定模型能否成功訓(xùn)練。學(xué)習(xí)速率查詢器可以讓人類很容易地找到一個良好的學(xué)習(xí)率,比AutoML更快。

學(xué)習(xí)速率和損失之間的關(guān)系

在對超參數(shù)自動化的方法選擇上還有另一個問題:一些類別的模型運用很廣泛,需要調(diào)整的參數(shù)很少,對超參數(shù)的改變并不敏感,這一點常被忽略。例如,隨機森林優(yōu)于梯度提升機器的地方就在于隨機森林更穩(wěn)定,GBM對超參數(shù)微小的變化就很敏感。結(jié)果自然隨機森林應(yīng)用的更廣泛。所以尋找能高效地改變超參數(shù)的方法將非常有用。

結(jié)語

現(xiàn)在我們對AutoML和神經(jīng)架構(gòu)搜索有了大致了解,在下一篇連載文章中,我們將近距離觀察谷歌的AutoML工具。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    31490

    瀏覽量

    269883
  • 自動化
    +關(guān)注

    關(guān)注

    29

    文章

    5620

    瀏覽量

    79529
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8438

    瀏覽量

    132921

原文標題:揭秘AutoML和神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索,機器學(xué)習(xí)自動化真能普及大眾嗎?

文章出處:【微信號:jqr_AI,微信公眾號:論智】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    如何輕松掌握機器學(xué)習(xí)概念和在工業(yè)自動化中的應(yīng)用

    ,突破傳統(tǒng)自動化技術(shù)發(fā)展的天花板呢?面對人工智能、機器學(xué)習(xí)、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)……這些深奧的概念,如何快速了解和掌握呢? 今天,給我5分鐘,
    的頭像 發(fā)表于 01-16 09:45 ?3171次閱讀

    機器視覺在工業(yè)自動化領(lǐng)域的前景應(yīng)用解析

    機器視覺的一個重要作用在于對工業(yè)自動化水平提升推動的過程,這也是國內(nèi)機器視覺市場目前的發(fā)展動力。而用戶的需求無疑是機器視覺得到普及與發(fā)展的眾
    發(fā)表于 03-31 11:50

    物聯(lián)網(wǎng)怎么普及工業(yè)自動化

    工業(yè)自動化行業(yè),說是一個新概念或技術(shù)不合適,事實上許多對象與子系統(tǒng)早期存在于一些工業(yè)應(yīng)用程序,適用于網(wǎng)絡(luò)是因為技術(shù)與產(chǎn)業(yè)發(fā)展到一定階段和不可避免的結(jié)果。維視圖像給您簡單分享物聯(lián)網(wǎng)是怎么普及工業(yè)自動化
    發(fā)表于 03-16 09:22

    再牛的自動化車間都不能缺少搬運機器

    力泰科技資訊:搬運機器人作為智能制造的代表,有著巨大的發(fā)展空間。雖然智能制造還未普及,但是很多自動化設(shè)備已經(jīng)悄悄的進入了工廠的車間了。很多人對搬運機器人認識還不夠多,其實并沒有想象中的
    發(fā)表于 08-20 11:21

    【AI學(xué)習(xí)】第3篇--人工神經(jīng)網(wǎng)絡(luò)

    `本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機器學(xué)習(xí)的步驟:訓(xùn)練與預(yù)測、訓(xùn)練的兩階段:正向推演與反向傳播、以Te
    發(fā)表于 11-05 17:48

    機器學(xué)習(xí)的相關(guān)資料下載

    https://www.toutiao.com/a6712245202418926083/機器學(xué)習(xí)最重要的應(yīng)用之一是嵌入式機器視覺領(lǐng)域,各類系統(tǒng)正在從視覺使能系統(tǒng)演進為視覺引導(dǎo)自動化
    發(fā)表于 12-14 07:03

    PlantStruxure協(xié)同自動化架構(gòu)選型指南

      協(xié)同自動化架構(gòu)是施耐德電氣針對工業(yè)和基礎(chǔ)設(shè)施應(yīng)用而研發(fā)的高度集成化的自動化架構(gòu)。協(xié)同自動化架構(gòu)
    發(fā)表于 09-27 16:27 ?2次下載

    機器學(xué)習(xí)專家們每天都在做什么?如何讓機器學(xué)習(xí)自動化

    在思考我們?nèi)绾巫?b class='flag-5'>機器學(xué)習(xí)自動化,以及如何讓它普及到更多領(lǐng)域的人時,首先要思考的是,機器學(xué)習(xí)專家們
    的頭像 發(fā)表于 07-19 16:01 ?5159次閱讀

    機器普及化自動化影響 高達70%的工作崗位面臨風(fēng)險

    風(fēng)險(WorldBank2016,NedelkoskaandQuintini2018)。受機器普及化自動化影響的工作的種類,其占比在制造業(yè)中可能非常高。
    發(fā)表于 01-25 13:33 ?1033次閱讀
    受<b class='flag-5'>機器</b>人<b class='flag-5'>普及化</b>和<b class='flag-5'>自動化</b>影響 高達70%的工作崗位面臨風(fēng)險

    神經(jīng)架構(gòu)搜索詳解

    近期谷歌大腦團隊發(fā)布了一項新研究:只靠神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索出的網(wǎng)絡(luò),不訓(xùn)練,不調(diào)參,就能直接執(zhí)行任務(wù)。
    的頭像 發(fā)表于 07-07 10:49 ?5104次閱讀
    <b class='flag-5'>神經(jīng)</b><b class='flag-5'>架構(gòu)</b><b class='flag-5'>搜索</b>詳解

    隨著人工智能的落地 自動化機器學(xué)習(xí)方法AutoML應(yīng)運而生

    隨著概念的普及,科技公司對人工智能的要求越來越高,成本、準確度、效率都影響著人工智能能否落地融入日常的使用中。對人工智能應(yīng)用的快速增長也進而催生了對影響人工智能水平的關(guān)鍵要素——機器學(xué)習(xí)方法的需求。
    發(fā)表于 12-02 15:03 ?813次閱讀

    機器流程自動化是什么

    RPA全稱Robotic Process Automation,即機器流程自動化機器的作用是用來替代人工操作大量高重復(fù)、標準的日常事務(wù),但這里的
    的頭像 發(fā)表于 01-01 16:52 ?9252次閱讀

    談?wù)勅绾螌?b class='flag-5'>機器學(xué)習(xí)引入自動化

    今天,筆者嘗試通過一個一般性方法的介紹來談?wù)勅绾螌?b class='flag-5'>機器學(xué)習(xí)引入自動化,同時對機器學(xué)習(xí)的相關(guān)概念做一個梳理。
    的頭像 發(fā)表于 10-09 15:55 ?2372次閱讀

    以進化算法為搜索策略實現(xiàn)神經(jīng)架構(gòu)搜索的方法

    自動化深度學(xué)習(xí)是目前深度學(xué)習(xí)領(lǐng)域的研究熱點,神經(jīng)架構(gòu)搜索算法是實現(xiàn)
    發(fā)表于 03-22 14:37 ?15次下載
    以進化算法為<b class='flag-5'>搜索</b>策略實現(xiàn)<b class='flag-5'>神經(jīng)</b><b class='flag-5'>架構(gòu)</b><b class='flag-5'>搜索</b>的方法

    DB4564_用于STM32微控制器的自動化機器學(xué)習(xí)(ML)工具

    DB4564_用于STM32微控制器的自動化機器學(xué)習(xí)(ML)工具
    發(fā)表于 11-23 20:28 ?0次下載
    DB4564_用于STM32微控制器的<b class='flag-5'>自動化</b><b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>(ML)工具
    主站蜘蛛池模板: 色噜噜狠狠色综合欧洲 | 成人免费一级毛片在线播放视频 | 美女被打开了屁股进去的视频 | 人妻中文字幕乱人伦在线 | 成人国产精品日本在线 | 噜噜噜在线AV免费观看看 | 乌克兰内射私拍 | 青青草原伊人 | 国产亚洲精品首页在线播放 | 亚洲精品高清视频 | 两个奶被男人揉了一个晚上 | 日日碰狠狠躁久久躁77777 | 亚洲视频在线观看不卡 | 中国农民真实bbwbbw | 欧美日韩高清一区二区三区 | 小寡妇水真多好紧 | 欧美精品v欧洲高清 | 经典WC女厕所里TV | 门鱼电影完整版免费版 | 国产在线成人一区二区三区 | 国产午夜高潮熟女精品AV | 欧美日韩亚洲成人 | 无人区日本电影在线观看高清 | 国产精人妻无码一区麻豆 | 九九热精品视频在线观看 | 在线欧美精品一区二区三区 | 久久a级片| 丝袜足控免费网站xx91 | 99精品视频免费观看 | 男子扒开美女尿口做羞羞的事 | 亚洲地址一地址二地址三 | 久久久这里有精品999 | 久久免费特黄毛片 | free性欧美xxx狂欢 | 久久久乱码精品亚洲日韩 | 午夜福利免费视频921000电影 | 国产国产乱老熟视频网站 | 在线观看国产人视频免费中国 | A级毛片无码久久精品免费 a级毛片黄免费a级毛片 | 欧美成人免费一区二区三区不卡 | 亚洲欧美国产综合在线一区 |