作為一個(gè)程序員,我們可以像學(xué)習(xí)編程一樣學(xué)習(xí)深度學(xué)習(xí)模型開發(fā)。我們以 Keras 為例來(lái)說(shuō)明。
我們可以用 5 步 + 4 種基本元素 + 9 種基本層結(jié)構(gòu),這 5-4-9 模型來(lái)總結(jié)。
5步法:
1. 構(gòu)造網(wǎng)絡(luò)模型2. 編譯模型3. 訓(xùn)練模型4. 評(píng)估模型5. 使用模型進(jìn)行預(yù)測(cè)
4種基本元素:
1. 網(wǎng)絡(luò)結(jié)構(gòu):由10種基本層結(jié)構(gòu)和其他層結(jié)構(gòu)組成2. 激活函數(shù):如relu, softmax。口訣: 最后輸出用softmax,其余基本都用relu3. 損失函數(shù):categorical_crossentropy多分類對(duì)數(shù)損失,binary_crossentropy對(duì)數(shù)損失,mean_squared_error平均方差損失, mean_absolute_error平均絕對(duì)值損失4. 優(yōu)化器:如SGD隨機(jī)梯度下降, RMSProp, Adagrad, Adam, Adadelta等
9種基本層模型
包括3種主模型:
1. 全連接層Dense2. 卷積層:如conv1d, conv2d3. 循環(huán)層:如lstm, gru
3種輔助層:1. Activation層2. Dropout層3. 池化層
3種異構(gòu)網(wǎng)絡(luò)互聯(lián)層:
1. 嵌入層:用于第一層,輸入數(shù)據(jù)到其他網(wǎng)絡(luò)的轉(zhuǎn)換2. Flatten層:用于卷積層到全連接層之間的過渡3. Permute層:用于RNN與CNN之間的接口
我們通過一張圖來(lái)理解下它們之間的關(guān)系
▌五步法
五步法是用深度學(xué)習(xí)來(lái)解決問題的五個(gè)步驟:
1. 構(gòu)造網(wǎng)絡(luò)模型2. 編譯模型3. 訓(xùn)練模型4. 評(píng)估模型5. 使用模型進(jìn)行預(yù)測(cè)
在這五步之中,其實(shí)關(guān)鍵的步驟主要只有第一步,這一步確定了,后面的參數(shù)都可以根據(jù)它來(lái)設(shè)置。
過程化方法構(gòu)造網(wǎng)絡(luò)模型
我們先學(xué)習(xí)最容易理解的,過程化方法構(gòu)造網(wǎng)絡(luò)模型的過程。
Keras中提供了Sequential容器來(lái)實(shí)現(xiàn)過程式構(gòu)造。只要用Sequential的add方法把層結(jié)構(gòu)加進(jìn)來(lái)就可以了。10種基本層結(jié)構(gòu)我們會(huì)在后面詳細(xì)講。
例:
from keras.models import Sequentialfrom keras.layers import Dense, Activationmodel = Sequential()model.add(Dense(units=64, input_dim=100))model.add(Activation("relu"))model.add(Dense(units=10))model.add(Activation("softmax"))
對(duì)于什么樣的問題構(gòu)造什么樣的層結(jié)構(gòu),我們會(huì)在后面的例子中介紹。
編譯模型
模型構(gòu)造好之后,下一步就可以調(diào)用Sequential的compile方法來(lái)編譯它。
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
編譯時(shí)需要指定兩個(gè)基本元素:loss是損失函數(shù),optimizer是優(yōu)化函數(shù)。
如果只想用最基本的功能,只要指定字符串的名字就可以了。如果想配置更多的參數(shù),調(diào)用相應(yīng)的類來(lái)生成對(duì)象。例:我們想為隨機(jī)梯度下降配上Nesterov動(dòng)量,就生成一個(gè)SGD的對(duì)象就好了:
from keras.optimizers import SGDmodel.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True))
lr是學(xué)習(xí)率,learning rate。
訓(xùn)練模型
調(diào)用fit函數(shù),將輸出的值X,打好標(biāo)簽的值y,epochs訓(xùn)練輪數(shù),batch_size批次大小設(shè)置一下就可以了:
model.fit(x_train, y_train, epochs=5, batch_size=32)
評(píng)估模型
模型訓(xùn)練的好不好,訓(xùn)練數(shù)據(jù)不算數(shù),需要用測(cè)試數(shù)據(jù)來(lái)評(píng)估一下:
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
用模型來(lái)預(yù)測(cè)
一切訓(xùn)練的目的是在于預(yù)測(cè):
classes = model.predict(x_test, batch_size=128)
▌4種基本元素
網(wǎng)絡(luò)結(jié)構(gòu)
主要用后面的層結(jié)構(gòu)來(lái)拼裝。網(wǎng)絡(luò)結(jié)構(gòu)如何設(shè)計(jì)呢? 可以參考論文,比如這篇中不管是左邊的19層的VGG-19,還是右邊34層的resnet,只要按圖去實(shí)現(xiàn)就好了。
激活函數(shù)
對(duì)于多分類的情況,最后一層是softmax。
其它深度學(xué)習(xí)層中多用relu。
二分類可以用sigmoid。
另外淺層神經(jīng)網(wǎng)絡(luò)也可以用tanh。
損失函數(shù)
categorical_crossentropy:多分類對(duì)數(shù)損失
binary_crossentropy:對(duì)數(shù)損失
mean_squared_error:均方差
mean_absolute_error:平均絕對(duì)值損失
對(duì)于多分類來(lái)說(shuō),主要用categorical_crossentropy。
優(yōu)化器
SGD:隨機(jī)梯度下降
Adagrad:Adaptive Gradient自適應(yīng)梯度下降
Adadelta:對(duì)于Adagrad的進(jìn)一步改進(jìn)
RMSProp
Adam
本文將著重介紹后兩種教程。
深度學(xué)習(xí)中的函數(shù)式編程
前面介紹的各種基本層,除了可以add進(jìn)Sequential容器串聯(lián)之外,它們本身也是callable對(duì)象,被調(diào)用之后,返回的還是callable對(duì)象。所以可以將它們視為函數(shù),通過調(diào)用的方式來(lái)進(jìn)行串聯(lián)。
來(lái)個(gè)官方例子:
from keras.layers import Input, Densefrom keras.models import Modelinputs = Input(shape=(784,))x = Dense(64, activation='relu')(inputs)x = Dense(64, activation='relu')(x)predictions = Dense(10, activation='softmax')(x)model = Model(inputs=inputs, outputs=predictions)model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])model.fit(data, labels)
為什么要用函數(shù)式編程?
答案是,復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)并不是都是線性的add進(jìn)容器中的。并行的,重用的,什么情況都有。這時(shí)候callable的優(yōu)勢(shì)就發(fā)揮出來(lái)了。
比如下面的Google Inception模型,就是帶并聯(lián)的:
我們的代碼自然是以并聯(lián)應(yīng)對(duì)并聯(lián)了,一個(gè)輸入input_img被三個(gè)模型所重用:
from keras.layers import Conv2D, MaxPooling2D, Inputinput_img = Input(shape=(256, 256, 3))tower_1 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)tower_1 = Conv2D(64, (3, 3), padding='same', activation='relu')(tower_1)tower_2 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)tower_2 = Conv2D(64, (5, 5), padding='same', activation='relu')(tower_2)tower_3 = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(input_img)tower_3 = Conv2D(64, (1, 1), padding='same', activation='relu')(tower_3)output = keras.layers.concatenate([tower_1, tower_2, tower_3], axis=1)
▌案例教程
CNN處理MNIST手寫識(shí)別
光說(shuō)不練是假把式。我們來(lái)看看符合五步法的處理MNIST的例子。
首先解析一下核心模型代碼,因?yàn)槟P褪蔷€性的,我們還是用Sequential容器
model = Sequential()
核心是兩個(gè)卷積層:
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))model.add(Conv2D(64, (3, 3), activation='relu'))
為了防止過擬合,我們加上一個(gè)最大池化層,再加上一個(gè)Dropout層:
model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))
下面要進(jìn)入全連接層輸出了,這兩個(gè)中間的數(shù)據(jù)轉(zhuǎn)換需要一個(gè)Flatten層:
model.add(Flatten())
下面是全連接層,激活函數(shù)是relu。
還怕過擬合,再來(lái)個(gè)Dropout層!
model.add(Dense(128, activation='relu'))model.add(Dropout(0.5))
最后通過一個(gè)softmax激活函數(shù)的全連接網(wǎng)絡(luò)輸出:
model.add(Dense(num_classes, activation='softmax'))
下面是編譯這個(gè)模型,損失函數(shù)是categorical_crossentropy多類對(duì)數(shù)損失函數(shù),優(yōu)化器選用Adadelta。
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
下面是可以運(yùn)行的完整代碼:
from __future__ import print_functionimport kerasfrom keras.datasets import mnistfrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, Flattenfrom keras.layers import Conv2D, MaxPooling2Dfrom keras import backend as Kbatch_size = 128num_classes = 10epochs = 12# input image dimensionsimg_rows, img_cols = 28, 28# the data, split between train and test sets(x_train, y_train), (x_test, y_test) = mnist.load_data()if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols)else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32')x_test = x_test.astype('float32')x_train /= 255x_test /= 255print('x_train shape:', x_train.shape)print(x_train.shape[0], 'train samples')print(x_test.shape[0], 'test samples')# convert class vectors to binary class matricesy_train = keras.utils.to_categorical(y_train, num_classes)y_test = keras.utils.to_categorical(y_test, num_classes)model = Sequential()model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))model.add(Conv2D(64, (3, 3), activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(128, activation='relu'))model.add(Dropout(0.5))model.add(Dense(num_classes, activation='softmax'))model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))score = model.evaluate(x_test, y_test, verbose=0)print('Test loss:', score[0])print('Test accuracy:', score[1])
下面我們來(lái)個(gè)surprise例子,處理一下各種語(yǔ)言之間的翻譯。
機(jī)器翻譯:多語(yǔ)種互譯
英譯漢,漢譯英之類的事情,在學(xué)生時(shí)代是不是一直難為這你呢?
現(xiàn)在不用擔(dān)心了,只要有兩種語(yǔ)言的對(duì)照表,我們就可以訓(xùn)練一個(gè)模型來(lái)像做一個(gè)機(jī)器翻譯。
首先得下載一個(gè)字典:http://www.manythings.org/anki/
然后我們還是老辦法,我們先看一下核心代碼。沒啥說(shuō)的,這類序列化處理的問題用的一定是RNN,通常都是用LSTM.
encoder_inputs = Input(shape=(None, num_encoder_tokens))encoder = LSTM(latent_dim, return_state=True)encoder_outputs, state_h, state_c = encoder(encoder_inputs)encoder_states = [state_h, state_c]decoder_inputs = Input(shape=(None, num_decoder_tokens))decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)decoder_dense = Dense(num_decoder_tokens, activation='softmax')decoder_outputs = decoder_dense(decoder_outputs)model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
優(yōu)化器選用rmsprop,損失函數(shù)還是categorical_crossentropy.
validation_split是將一個(gè)集合隨機(jī)分成訓(xùn)練集和測(cè)試集。
# Run trainingmodel.compile(optimizer='rmsprop', loss='categorical_crossentropy')model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=batch_size, epochs=epochs, validation_split=0.2)
最后,訓(xùn)練一個(gè)模型不容易,我們將其存儲(chǔ)起來(lái)。
model.save('s2s.h5')
最后,附上完整的實(shí)現(xiàn)了機(jī)器翻譯功能的代碼,加上注釋和空行有100多行,供有需要的同學(xué)取用。
from __future__ import print_functionfrom keras.models import Modelfrom keras.layers import Input, LSTM, Denseimport numpy as npbatch_size = 64 # Batch size for training.epochs = 100 # Number of epochs to train for.latent_dim = 256 # Latent dimensionality of the encoding space.num_samples = 10000 # Number of samples to train on.# Path to the data txt file on disk.data_path = 'fra-eng/fra.txt'# Vectorize the data.input_texts = []target_texts = []input_characters = set()target_characters = set()with open(data_path, 'r', encoding='utf-8') as f: lines = f.read().split('
')for line in lines[: min(num_samples, len(lines) - 1)]: input_text, target_text = line.split(' ')
# We use "tab" as the "start sequence" character # for the targets, and "
" as "end sequence" character.
target_text = ' ' + target_text + '
' input_texts.append(input_text) target_texts.append(target_text) for char in input_text:
if char not in input_characters:
input_characters.add(char) for char in target_text:
if char not in target_characters:
target_characters.add(char)input_characters = sorted(list(input_characters))target_characters = sorted(list(target_characters))num_encoder_tokens = len(input_characters)num_decoder_tokens = len(target_characters)max_encoder_seq_length = max([len(txt) for txt in input_texts])max_decoder_seq_length = max([len(txt) for txt in target_texts])print('Number of samples:', len(input_texts))print('Number of unique input tokens:', num_encoder_tokens)print('Number of unique output tokens:', num_decoder_tokens)print('Max sequence length for inputs:', max_encoder_seq_length)print('Max sequence length for outputs:', max_decoder_seq_length)input_token_index = dict( [(char, i) for i, char in enumerate(input_characters)])target_token_index = dict( [(char, i) for i, char in enumerate(target_characters)])encoder_input_data = np.zeros( (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype='float32')decoder_input_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32')decoder_target_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)): for t, char in enumerate(input_text): encoder_input_data[i, t, input_token_index[char]] = 1. for t, char in enumerate(target_text):
# decoder_target_data is ahead of decoder_input_data by one timestep decoder_input_data[i, t, target_token_index[char]] = 1.
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_data[i, t - 1, target_token_index[char]] = 1.# Define an input sequence and process it.encoder_inputs = Input(shape=(None, num_encoder_tokens))encoder = LSTM(latent_dim, return_state=True)encoder_outputs, state_h, state_c = encoder(encoder_inputs)# We discard `encoder_outputs` and only keep the states.encoder_states = [state_h, state_c]# Set up the decoder, using `encoder_states` as initial state.decoder_inputs = Input(shape=(None, num_decoder_tokens))# We set up our decoder to return full output sequences,# and to return internal states as well. We don't use the# return states in the training model, but we will use them in inference.decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
initial_state=encoder_states)decoder_dense = Dense(num_decoder_tokens, activation='softmax')decoder_outputs = decoder_dense(decoder_outputs)# Define the model that will turn# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`model = Model([encoder_inputs, decoder_inputs], decoder_outputs)# Run trainingmodel.compile(optimizer='rmsprop', loss='categorical_crossentropy')model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=batch_size, epochs=epochs,
validation_split=0.2)# Save modelmodel.save('s2s.h5')encoder_model = Model(encoder_inputs, encoder_states)decoder_state_input_h = Input(shape=(latent_dim,))decoder_state_input_c = Input(shape=(latent_dim,))decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]decoder_outputs, state_h, state_c = decoder_lstm( decoder_inputs, initial_state=decoder_states_inputs)decoder_states = [state_h, state_c]decoder_outputs = decoder_dense(decoder_outputs)decoder_model = Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states)# Reverse-lookup token index to decode sequences back to# something readable.reverse_input_char_index = dict( (i, char) for char, i in input_token_index.items())reverse_target_char_index = dict( (i, char) for char, i in target_token_index.items())def decode_sequence(input_seq): # Encode the input as state vectors. states_value = encoder_model.predict(input_seq) # Generate empty target sequence of length 1.
target_seq = np.zeros((1, 1, num_decoder_tokens)) # Populate the first character of target sequence with the start character. target_seq[0, 0, target_token_index[' ']] = 1.
# Sampling loop for a batch of sequences # (to simplify, here we assume a batch of size 1). stop_condition = False decoded_sentence = '' while not stop_condition:
output_tokens, h, c = decoder_model.predict(
[target_seq] + states_value)
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
# Exit condition: either hit max length
# or find stop character.
if (sampled_char == '
' or
len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.
# Update states
states_value = [h, c] return decoded_sentencefor seq_index in range(100):
# Take one sequence (part of the training set)
# for trying out decoding. input_seq = encoder_input_data[seq_index: seq_index + 1] decoded_sentence = decode_sequence(input_seq) print('-') print('Input sentence:', input_texts[seq_index]) print('Decoded sentence:', decoded_sentence)
-
網(wǎng)絡(luò)結(jié)構(gòu)
+關(guān)注
關(guān)注
0文章
48瀏覽量
11172 -
深度學(xué)習(xí)
+關(guān)注
關(guān)注
73文章
5512瀏覽量
121440
原文標(biāo)題:TensorFlow快餐教程:程序員快速入門深度學(xué)習(xí)五步法
文章出處:【微信號(hào):rgznai100,微信公眾號(hào):rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論