德國慕尼黑理工大學(Technical University of Munich;TUM)物理學家組成的研究團隊開發出分子納米開關,能夠透過施加電壓在兩種不同結構的狀態之間切換。該團隊表示,這項研究發現可望作為開創性組件的基礎,從而以整合且能直接尋址的有機分子取代硅組件。
TUM物理學系的納米科學家Joachim Reichert表示:“僅用一個單分子進行切換,就可能讓未來的電子組件朝微型化的極限向前邁進一步。”
該研究團隊最初開發的方法是使用外加電壓,讓他們能與強光場中的分子形成精確的電接觸。在大約1V的電位差下,分子改變其結構:使其變得平坦、導電且散射光線。這種強烈依賴分子結構的光學行為,激發了研究人員的創意,因為在這種情況下可以觀察到散射活動——拉曼散射(Raman scattering),同時透過外加電壓的方式進行開啟和關閉。
研究人員使用的是由瑞士巴塞爾(Basel)和德國卡爾斯魯爾(Karlsruhe)的團隊合成的分子。這種分子在充電時會以特定的方式改變其結構。它們排列在金屬表面上,并采用具有極薄金屬涂層為尖端的玻璃碎片角落進行接觸。這使得電接觸、光源和集光器整合于一。研究人員使用該碎片將雷射光直接照射在分子上,并測量隨施加電壓而變化的微小光譜信號。
可實現電切換的有機分子(來源:Yuxiang Gong/TUM/Journal of the American Chemical Society)
從技術角度來看,在各個分子之間建立可靠的電接觸極具挑戰性。科學家們如今已經成功地將這一過程與單分子光譜學結合起來,使其能以極高的精確度觀察到分子中最小的結構變化。
分子開關的挑戰
根據研究人員在《美國化學學會期刊》(Journal of the American Chemical Society)發表的文章,早期以分子開關數組建立運算的嘗試,一部份受到限于“金屬-分子-金屬”接點直接化學特性化的挑戰。盡管低溫掃描探針研究提高了對于電流和電壓誘導構形切換的機理了解,但“金屬-分子-金屬”構形大部份仍然是從間接證據推斷而來的。
因此,開發強大的化學靈敏技巧有助于該領域的發展。在這項研究中,物理學家透過振動光譜探測了雙能態分子開關的構形,同時透過外加電壓進行操作。他們的研究著重于在室溫下穩定單分子開關中測量單分子拉曼光譜,并顯示其信號調變近乎兩個數量級。
在國際合作團隊的共同努力下,物理學家團隊成功地將單分子作為光信號的開關組件;其微小的尺寸使納米系統適用于需要透過電勢切換光源的光電應用。
-
光源
+關注
關注
3文章
710瀏覽量
67847 -
納米
+關注
關注
2文章
699瀏覽量
37086
發布評論請先 登錄
相關推薦
評論