????Content:
9.1 Supervised Learning and Unsupervised Learning
9.2 K-means algorithm
9.3 Optimization objective
9.4 Random Initialization
9.5 Choosing the Number of Clusters
9.1 Supervised Learning and Unsupervised Learning
我們已經學習了許多機器學習算法,包括線性回歸,Logistic回歸,神經網絡以及支持向量機。這些算法都有一個共同點,即給出的訓練樣本自身帶有標記。比如,使用線性回歸預測房價時,我們所使用的每一個訓練樣本是一個或多個變量(如面積,樓層等)以及自身帶有的標記即房價。而使用Logistic回歸,神經網絡和支持向量機處理分類問題時,也是利用訓練樣本自身帶有標記即種類,例如進行垃圾郵件分類時是利用已有的垃圾郵件(標記為1)和非垃圾郵件(標記為0),進行數字識別時,變量是每個像素點的值,而標記是數字本身的值。我們把使用帶有標記的訓練樣本進行學習的算法稱為監督學習(Supervised Learning)。監督學習的訓練樣本可以統一成如下形式,其中x為變量,y為標記。
顯然,現實生活中不是所有數據都帶有標記(或者說標記是未知的)。所以我們需要對無標記的訓練樣本進行學習,來揭示數據的內在性質及規律。我們把這種學習稱為無監督學習(Unsupervised Learning)。所以,無監督學習的訓練樣本如下形式,它僅包含特征量。
圖9-1形象的表示了監督學習與無監督學習的區別。圖(1)表示給帶標記的樣本進行分類,分界線兩邊為不同的類(一類為圈,另一類為叉);圖(2)是基于變量x1和x2對無標記的樣本(表面上看起來都是圈)進行聚類(Clustering)。
圖9-1 一個監督學習與無監督學習的區別實例
無監督學習也有很多應用,一個聚類的例子是:對于收集到的論文,根據每個論文的特征量如詞頻,句子長,頁數等進行分組。聚類還有許多其它應用,如圖9-2所示。一個非聚類的例子是雞尾酒會算法,即從帶有噪音的數據中找到有效數據(信息),例如在嘈雜的雞尾酒會你仍然可以注意到有人叫你。所以雞尾酒會算法可以用于語音識別(詳見wikipedia)。
quora上有更多關于監督學習與無監督學習之間的區別的討論。
圖9-2 一些聚類的應用
9.2 K-means algorithm
聚類的基本思想是將數據集中的樣本劃分為若干個通常是不相交的子集,每個子集稱為一個"簇"(cluster)。劃分后,每個簇可能有對應的概念(性質),比如根據頁數,句長等特征量給論文做簇數為2的聚類,可能得到一個大部分是包含碩士畢業論文的簇,另一個大部分是包含學士畢業論文的簇。
K均值(K-means)算法是一個廣泛使用的用于簇劃分的算法。下面說明K均值算法的步驟:
隨機初始化K個樣本(點),稱之為簇中心(cluster centroids);
簇分配: 對于所有的樣本,將其分配給離它最近的簇中心;
移動簇中心:對于每一個簇,計算屬于該簇的所有樣本的平均值,移動簇中心到平均值處;
重復步驟2和3,直到找到我們想要的簇(即優化目標,詳解下節9.3)
圖9-3演示了以特征量個數和簇數K均為2的情況。
圖9-3 K均值算法的演示
通過上述描述,下面我們形式化K均值算法。
輸入:
K (number of clusters)
Training set
算法:
Randomly initialize K cluster centroids
Repeat {
for i = 1 to m
for k = 1 to K
}
上述算法中,第一個循環對應了簇分配的步驟:我們構造向量c,使得c(i)的值等于x(i)所屬簇的索引,即離x(i)最近簇中心的索引。用數學的方式表示如下:
第二個循環對應移動簇中心的步驟,即移動簇中心到該簇的平均值處。更數學的方式表示如下:
其中
如果有一個簇中心沒有分配到一個樣本,我們既可以重新初始化這個簇中心,也可以直接將其去除。
經過若干次迭代后,該算法將會收斂,也就是繼續迭代不會再影響簇的情況。
在某些應用中,樣本可能比較連續,看起來沒有明顯的簇劃分,但是我們還是可以用K均值算法將樣本分為K個子集供參考。例如根據人的身高和體重劃分T恤的大小碼,如圖9-4所示。
圖9-4K-means for non-separated clusters
9.3 Optimization objective
重新描述在K均值算法中使用的變量:
使用這些變量,定義我們的cost function如下:
所以我們的優化目標就是
結合9.2節所描述的算法,可以發現:
在簇分配步驟中,我們的目標是通過改變
在移動簇中心步驟中,我們的目標通過改變
注意,在K均值算法中,cost function不可能能增加,它應該總是下降的(區別于梯度下降法)。
9.4 Random Initialization
下面介紹一種值得推薦的初始化簇中心的方法。
確保K < m,也就是確保簇的數量應該小于樣本數;
隨機選擇K個訓練樣本;
令K個簇中心
K均值算法可能陷入局部最優。為了減少這種情況的發生,我們可以基于隨機初始化,多次運行K均值算法。所以,算法變成如下形式(以運行100次為例:效率與準確性的tradeoff)
For i = 1 to 100 {
Randomly initialize K-means.
Run K-means. Get
Compute cost function (distortion)
}
Pick clustering that gave lowest cost
9.5 Choosing the Number of Clusters
選擇K的取值通常是主觀的,不明確的。也就是沒有一種方式確保K的某個取值一定優于其他取值。但是,有一些方法可供參考。
The elbow method: 畫出代價J關于簇數K的函數圖,J值應該隨著K的增加而減小,然后趨于平緩,選擇當J開始趨于平衡時的K的取值。如圖9-5的(1)所示。
但是,通常這條曲線是漸變的,沒有很顯然的"肘部"。如圖9-5的(2)所示。
圖9-5 代價J關于簇數K的曲線圖
注意:隨著K的增加J應該總是減少的,否則,一種出錯情況可能是K均值陷入了一個糟糕的局部最優。
一些其他的方法參見wikipedia。
當然,我們有時應該根據后續目的( later/downstream purpose )來確定K的取值。還是以根據人的身高和體重劃分T恤的大小碼為例,若我們想將T恤大小劃分為S/M/L這3種類型,那么K的取值應為3;若想要劃分為XS/S/M/L/XL這5種類型,那么K的取值應為5。如圖9-6所示。
圖9-6 劃分T恤size的兩種不同情況
-
機器學習算法
+關注
關注
2文章
47瀏覽量
6465 -
無監督學習
+關注
關注
1文章
16瀏覽量
2764
原文標題:Stanford機器學習筆記-9. 聚類(Clustering)
文章出處:【微信號:AI_shequ,微信公眾號:人工智能愛好者社區】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論