色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

開發(fā)人工智能與大數(shù)據(jù)應(yīng)用系統(tǒng)時,應(yīng)把握好的十二個注意點

機(jī)器學(xué)習(xí)算法與人工智能 ? 2018-04-02 10:37 ? 次閱讀

人工智能與大數(shù)據(jù)開發(fā)的12個注意點

人工智能是近年來科技發(fā)展的重要方向,在大數(shù)據(jù)時代,對數(shù)據(jù)采集、挖掘、應(yīng)用的技術(shù)越來越受到矚目。在人工智能和大數(shù)據(jù)的開發(fā)過程中,有哪些特別需要注意的要點?來源:網(wǎng)絡(luò)大數(shù)據(jù)。

人工智能領(lǐng)域的算法大師、華盛頓大學(xué)教授Pedro Domingos對此進(jìn)行了深入思考。在我們新近翻譯的《智能Web算法》(第2版)中,對Pedro Domingos教授的觀點進(jìn)行了高度的概括,提煉出12個注意點,為行業(yè)開發(fā)實踐提供了重要參考:

1注意點1:你的數(shù)據(jù)未必可靠

在實際應(yīng)用中,有很多各種各樣的原因會導(dǎo)致你的數(shù)據(jù)是不可靠的。因此,當(dāng)你將數(shù)據(jù)用于解決問題前,必須經(jīng)常留心來檢查數(shù)據(jù)是否值得信賴。如果基于糟糕的數(shù)據(jù)來挖掘,無論多么聰明的人也永遠(yuǎn)只會獲得糟糕的結(jié)果。下面列舉了一些常見的可導(dǎo)致數(shù)據(jù)可靠性問題的因素:

用于開發(fā)的數(shù)據(jù),往往和實際情況下的數(shù)據(jù)分布不同。例如也許你想把用戶按照身高劃分為“高”、“中等”、“矮”三檔,但如果系統(tǒng)開發(fā)時使用的數(shù)據(jù)集里最低用戶的身高是6英尺(184cm),那么很有可能你開發(fā)出來的系統(tǒng)里會把一個“僅有6英尺”的用戶稱為“矮”用戶。

你的數(shù)據(jù)集中存在很多缺失數(shù)據(jù)。事實上,除非是人為構(gòu)造的數(shù)據(jù)集合,否則很難避免缺失數(shù)據(jù)問題的發(fā)生,如何處理數(shù)據(jù)缺失的問題是很有技巧的事情。實踐中我們要么是干脆丟棄一部分殘缺的數(shù)據(jù),要么就是想辦法計算一些數(shù)值去填補(bǔ)這些缺失值。無論哪種方法都可能導(dǎo)致應(yīng)用結(jié)果的不穩(wěn)定。

你的數(shù)據(jù)可能隨時在變化。數(shù)據(jù)庫的表結(jié)構(gòu)可能會變,數(shù)據(jù)定義也可能會變。

你的數(shù)據(jù)可能沒有被歸一化。假設(shè)你可能在觀察一組用戶的體重,為了能夠獲得有效的結(jié)論,首先需要對每個體重的衡量單位進(jìn)行歸一化,是英鎊還是公斤,不能混淆著用。

你的數(shù)據(jù)可能并不適用于相應(yīng)的算法。數(shù)據(jù)存在著各種各樣的形式和規(guī)范,或者叫數(shù)據(jù)類型(data types),有些是數(shù)值化的數(shù)據(jù),有些則不是。有些數(shù)據(jù)集合能被有序排列,有些則做不到。有些是離散化的數(shù)據(jù)(例如房間里的人數(shù)),另一些則是連續(xù)化的(例如氣溫或者氣壓等數(shù)據(jù))。

2注意點2:計算難以瞬間完成

完成任何一個人工智能解決方案的計算,都需要一定的時間,方案的響應(yīng)速度,對商業(yè)應(yīng)用的成功與否起到十分關(guān)鍵的作用。不能總是盲目假設(shè)任何算法在所有數(shù)據(jù)集上都一定能在規(guī)定時間內(nèi)完成,你需要測試下算法的性能是否在可接受的應(yīng)用范圍內(nèi)。

以搜索引擎為例,用戶對結(jié)果返回的時長是有忍耐的限度的。如果用戶等待的時間超過10秒,50%的用戶會流失,如果等待時間超過1分鐘,90%以上的用戶會流失。在開發(fā)智能應(yīng)用系統(tǒng)時,不能為了達(dá)到更好的算法精度而忽略系統(tǒng)運(yùn)算和等待的時間,否則會導(dǎo)致整個產(chǎn)品的失敗。

3注意點3: 數(shù)據(jù)的規(guī)模非常重要

當(dāng)我們考慮智能應(yīng)用時,數(shù)據(jù)規(guī)模是很重要的因素。數(shù)據(jù)規(guī)模的影響可以分為兩點來考察:第一點是規(guī)模會影響應(yīng)用系統(tǒng)的響應(yīng)速度,上一節(jié)我們剛提過;第二點是在很大的數(shù)據(jù)集上的挖掘出有價值結(jié)果的能力會受到考驗。例如為100個用戶開發(fā)的電影或音樂推薦系統(tǒng)可能效果很好,但是同樣的算法移植到有著100000個用戶的環(huán)境里,效果可能就不盡如人意了。

其次,使用更多的數(shù)據(jù)來訓(xùn)練的簡單算法,比受制于維度詛咒(Dimension Curse)的復(fù)雜算法往往有好得多的效果。類似Google這樣擁有海量數(shù)據(jù)的大型企業(yè),優(yōu)秀的應(yīng)用效果不僅來自于精妙復(fù)雜的算法,也來自于其對海量訓(xùn)練數(shù)據(jù)的大規(guī)模分析挖掘。

4注意點4: 不同的算法具有不同的擴(kuò)展能力

我們不能假設(shè)智能應(yīng)用系統(tǒng)都可以通過簡單增加服務(wù)器的方法來擴(kuò)展性能。有些算法是有擴(kuò)展性的,而另一些則不行。

例如如果我們要從數(shù)億的文章標(biāo)題里,找出標(biāo)題相似的各個組的文章,注意并不是所有的聚類算法此時都能并行化運(yùn)行的,你應(yīng)該在設(shè)計系統(tǒng)的同時就考慮可擴(kuò)展性。有些情況下你需要將數(shù)據(jù)切分成較小的集合,并能夠讓智能算法在各個集合上并行運(yùn)行。設(shè)計系統(tǒng)時所選擇的算法,往往需要有并行化的版本,而在一開始就需要將其納入考慮,因為通常圍繞著算法還會有很多相關(guān)聯(lián)的商業(yè)邏輯和體系結(jié)構(gòu)需要一并考慮。

5注意點5:并不存在萬能的方法

你可能聽說過一句諺語“當(dāng)你有了把榔頭的時候,看什么東西都像釘子”,這里想表達(dá)的意思是:并不存在能夠解決所有智能應(yīng)用問題的萬能算法。

智能應(yīng)用軟件和其他所有軟件類似——具有其特定的應(yīng)用領(lǐng)域和局限性。當(dāng)面對新的應(yīng)用領(lǐng)域時,一定要充分的驗證原有方法的可行性,而且你最好能嘗試用全新的視角來考察問題,因為不同的算法在解決特定的問題時才會更有效和得當(dāng)。

6注意點6:數(shù)據(jù)并不是萬能的

根本上看,機(jī)器學(xué)習(xí)算法并不是魔法,它需要從訓(xùn)練數(shù)據(jù)開始,逐步延伸到未知數(shù)據(jù)中去。

例如假設(shè)你已經(jīng)對數(shù)據(jù)的分布規(guī)律有所了解,那么通過圖模型來表達(dá)這些先驗的知識會非常有效。除了數(shù)據(jù)以外,你還需要仔細(xì)的考慮,該領(lǐng)域有哪些先驗知識可以應(yīng)用,這對開發(fā)一個更有效的分類器會很有幫助。數(shù)據(jù)和行業(yè)經(jīng)驗結(jié)合往往能事半功倍。

7注意點7:模型訓(xùn)練的時間差異很大

在特定應(yīng)用中,可能某些參數(shù)的微小變化就會讓模型的訓(xùn)練時間出現(xiàn)很大的差異。例如在深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練時就會有各種各樣的參數(shù)調(diào)節(jié)的情況發(fā)生。

人們往往會直觀地覺得調(diào)整參數(shù)時,訓(xùn)練時間是基本穩(wěn)定不變的。例如假設(shè)有個系統(tǒng)是計算地球平面上任意兩點之間的距離的,那么任意給出兩個點的坐標(biāo)時,計算時間差不多都是相同的。但在另一些系統(tǒng)里卻并非如此,有時細(xì)微的調(diào)整會帶來很明顯的時間差異,有時差異甚至可以大到數(shù)小時,而不是數(shù)秒。

8注意點8:泛化能力是目標(biāo)

機(jī)器學(xué)習(xí)實踐中最普遍存在的一個誤區(qū)是陷入處理細(xì)節(jié)中而忘了最初的目標(biāo)——通過調(diào)查來獲得處理問題的普適的方法。

測試階段是驗證某個方法是否具備泛化能力(generalization ability)的關(guān)鍵環(huán)節(jié)(通過交叉驗證、外部數(shù)據(jù)驗證等方法),但是尋找合適的驗證數(shù)據(jù)集不容易。如果在一個只有幾百個樣本的集合上去訓(xùn)練有數(shù)百萬維特征的模型,試圖想獲得優(yōu)秀的精度是很荒唐的。

9注意點9:人類的直覺未必準(zhǔn)確

在特征空間膨脹的時候,輸入信息間形成的組合關(guān)系會快速增加,這讓人很難像對中等數(shù)據(jù)集合那樣能夠?qū)ζ渲幸徊糠謹(jǐn)?shù)據(jù)進(jìn)行抽樣觀察。更麻煩的是,特征數(shù)量增加時人類對數(shù)據(jù)的直覺會迅速降低。

例如在高維空間里,多元高斯分布并不是沿著均值分布,而是像一個扇貝形狀圍繞在均值附近,這和人們的主觀感受完全不同。在低維空間中建立一個分類器并不難,但是當(dāng)維度增加時,人類就很難直觀的理解了。

注意點10:要考慮融入更多新特征

你很可能聽說過諺語“進(jìn)來的是垃圾,出去的也是垃圾”(garbage in, garbage out),在建立機(jī)器學(xué)習(xí)應(yīng)用中這一點尤其重要。為了避免挖掘的效果失控,關(guān)鍵是要充分掌握問題所在的領(lǐng)域,通過調(diào)查數(shù)據(jù)來生成各種各樣的特征,這樣的做法會對提升分類的準(zhǔn)確率和泛化能力有很大的幫助。僅靠把數(shù)據(jù)扔進(jìn)分類器就想獲得優(yōu)秀結(jié)果的幻想是不可能實現(xiàn)的。(達(dá)觀數(shù)據(jù) 陳運(yùn)文)

注意點11:要學(xué)習(xí)各種不同的模型

模型的組合(Ensemble)技術(shù)正變得越來越流行了,因為組合方法,僅需要付出少許偏見(bias)的代價,就能大大的減少算法的不確定性。在著名的Netflix算法競賽中,冠軍隊以及成績優(yōu)異隊伍們?nèi)际褂昧私M合模型方法,把超過100個模型合并在一起(在模型上疊加高層的模型形成組合)以提升效果。在人工智能用于實際應(yīng)用時,從業(yè)者普遍都認(rèn)為,未來的算法一定時會通過模型組合的方法來獲得更好精度,但是這也會抬高非專業(yè)人員理解系統(tǒng)機(jī)制的門檻。

注意點12:相關(guān)關(guān)系不等同于因果關(guān)系

這一點值得反復(fù)強(qiáng)調(diào),我們可以通過一句調(diào)侃的話來解釋:“地球變暖、地震、龍卷風(fēng),以及其他自然災(zāi)害,都和18世紀(jì)以來全球海盜數(shù)量的減少有直接關(guān)系”。這兩個變量的變化有相關(guān)性,但是并不能說存在因果關(guān)系,因為往往存在第三類(甚至第4、5類)未被觀察到的變量在起作用。相關(guān)關(guān)系應(yīng)該看作是潛在的因果關(guān)系的一定程度的體現(xiàn),但需要進(jìn)一步研究。

在開發(fā)人工智能與大數(shù)據(jù)應(yīng)用系統(tǒng)時,把握好以上十二個注意點,能夠有效避免實戰(zhàn)中的各種“坑”,幫助技術(shù)在走出實驗室,走向落地應(yīng)用時,能發(fā)揮更加健壯、強(qiáng)大的作用。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1794

    文章

    47642

    瀏覽量

    239682
  • 大數(shù)據(jù)
    +關(guān)注

    關(guān)注

    64

    文章

    8908

    瀏覽量

    137657

原文標(biāo)題:人工智能與大數(shù)據(jù)開發(fā)的12個注意點

文章出處:【微信號:machinelearningai,微信公眾號:機(jī)器學(xué)習(xí)算法與人工智能】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    人工智能是什么?

    的階段。阻礙前行的因素很多,要攻克的技術(shù)難點也很多,但這些問題在人工智能領(lǐng)域的專家來看,技術(shù)的積累都只是時間問題,對人工智能技術(shù)做更進(jìn)一步剖析的話,其實就是“算法”+“海量數(shù)據(jù)”。更通俗一
    發(fā)表于 09-16 15:40

    如何在人工智能機(jī)器人領(lǐng)域應(yīng)用大數(shù)據(jù)

    ` 本帖最后由 uoou 于 2015-11-13 16:42 編輯 為了多來點干貨,我寫的思路會有點特別:不直接講大數(shù)據(jù)是怎么做的,我會跳出來講,在人工智能機(jī)器人這個方向,把握
    發(fā)表于 11-13 16:37

    智能電器中的大數(shù)據(jù)/人工智能開發(fā)和應(yīng)用

    智能電器中的大數(shù)據(jù)人工智能智能電器為何能根據(jù)你的喜好推薦你想要的服務(wù)?數(shù)據(jù)采集和處理如何為智能
    發(fā)表于 06-29 14:11

    數(shù)據(jù)人工智能發(fā)展的重要性

    的事情,因此大數(shù)據(jù)人工智能的前提。  “在企業(yè)系統(tǒng)里,絕對需要做一些判斷和推薦,你要推薦什么商品給用戶,該放什么樣的廣告,這背后都可以用到人工智能引擎。”將來,“
    發(fā)表于 10-09 15:26

    MaxCompute印尼開服,成為阿里云第十二個大數(shù)據(jù)服務(wù)節(jié)點

    、新加坡、悉尼、法蘭克福、吉隆坡、硅谷、東京、孟買后 MaxCompute 全球化部署的第12個國家。MaxCompute 不僅將加速印尼大數(shù)據(jù)開發(fā)框架的應(yīng)用,更為阿里云向全球各地區(qū)提供大數(shù)據(jù)計算和
    發(fā)表于 02-07 11:15

    人工智能就業(yè)前景

    據(jù)相關(guān)招聘機(jī)構(gòu)數(shù)據(jù)顯示,2018年AI領(lǐng)域仍然是大部分資深技術(shù)人才轉(zhuǎn)崗的首選目標(biāo),在人才最緊缺的前十大職位中,時下最火的大數(shù)據(jù)人工智能、算法類崗位占據(jù)半壁江山。據(jù)調(diào)查指出,2017年技術(shù)研發(fā)類崗位
    發(fā)表于 03-29 15:46

    天津大學(xué)與中科視拓共建“人工智能聯(lián)合實驗室”

    大數(shù)據(jù)平臺和人工智能教學(xué)科研實驗平臺開發(fā)等方面展開深度合作,共同推動天津大學(xué)人工智能高層次人才的培養(yǎng),同時深化中科視拓在人工智能原創(chuàng)技術(shù)上的
    發(fā)表于 05-25 10:19

    解讀人工智能的未來

    `已歷經(jīng)60多年的人工智能在物聯(lián)網(wǎng)以及大數(shù)據(jù)的推動下,實現(xiàn)飛躍式的發(fā)展,并且迎來了第三個黃金周期。必優(yōu)傳感今天和大家解讀一下關(guān)于人工智能的未來。自從有了人工智能,引發(fā)了人類的各種“未來
    發(fā)表于 11-14 10:43

    人工智能大數(shù)據(jù)、物聯(lián)網(wǎng)+醫(yī)療是這樣落地的(一)

    醫(yī)院信息化建設(shè)標(biāo)準(zhǔn)與規(guī)范(試行)》明顯加強(qiáng)了大數(shù)據(jù)人工智能、物聯(lián)網(wǎng)等新興技術(shù)在三級醫(yī)院的場景建設(shè)思路。對于本次《建設(shè)標(biāo)準(zhǔn)》所提到的場景,采用了匿名問券的形式,邀請數(shù)十位國內(nèi)頂級醫(yī)院信息科主任以及行業(yè)
    發(fā)表于 12-10 20:12

    十二個Pixhawk源碼筆記分析資源下載

    十二個Pixhawk源碼筆記分析資源下載
    發(fā)表于 04-02 09:20 ?4次下載
    <b class='flag-5'>十二個</b>Pixhawk源碼筆記分析資源下載

    人工智能與大數(shù)據(jù)的關(guān)系和影響

    人工智能大數(shù)據(jù)是密不可分的。大數(shù)據(jù)提供了足夠的數(shù)據(jù)讓機(jī)器學(xué)習(xí),從而使人工智能更加聰明、精確和準(zhǔn)確。同時,
    發(fā)表于 08-03 17:45 ?2682次閱讀

    人工智能與大數(shù)據(jù)的區(qū)別與聯(lián)系

    人工智能與大數(shù)據(jù)的區(qū)別與聯(lián)系 隨著互聯(lián)網(wǎng)時代的到來,大數(shù)據(jù)產(chǎn)生和存儲引發(fā)了業(yè)界的廣泛關(guān)注,而隨著人工智能(AI)技術(shù)的發(fā)展,特別是深度學(xué)習(xí)和自然語言處理技術(shù)的成熟,
    的頭像 發(fā)表于 08-09 18:01 ?2821次閱讀

    大數(shù)據(jù)人工智能哪個

    大數(shù)據(jù)人工智能哪個 隨著技術(shù)的不斷發(fā)展,大數(shù)據(jù)人工智能成為了當(dāng)前最熱門的話題之一,而且這兩項技術(shù)也各有優(yōu)缺點。下面我們將探討一下
    的頭像 發(fā)表于 08-12 17:39 ?3502次閱讀

    人工智能大數(shù)據(jù)哪個

    人工智能大數(shù)據(jù)哪個 人工智能大數(shù)據(jù)是當(dāng)前科技領(lǐng)域最為火熱的兩個話題,吸引了越來越多的關(guān)注和研究。隨著技術(shù)的不斷發(fā)展和應(yīng)用,這兩者已經(jīng)成
    的頭像 發(fā)表于 08-12 17:44 ?1079次閱讀

    什么是人工智能與大數(shù)據(jù)

    人工智能與大數(shù)據(jù)在不同領(lǐng)域中都扮演著至關(guān)重要的角色。在技術(shù)領(lǐng)域,人工智能大數(shù)據(jù)可用于智能交互和自動化流程、機(jī)器學(xué)習(xí)和自然語言處理,以及用于
    的頭像 發(fā)表于 08-13 09:41 ?2583次閱讀
    主站蜘蛛池模板: 国产人人为我我为人人澡 | 北原多香子qvod | 99re久久超碰视频精品 | 国产成人综合在线观看 | 国产XXXXXX农村野外 | 蜜芽丅v新网站在线观看 | 打扑克床上视频不用下载免费观看 | 国产亚洲精品久久久999蜜臀 | 国产人妻XXXX精品HD电影 | 国产h视频免费观看 | 攵女yin乱合集高h | 天天色天天干天天 | 亚洲免费网站在线观看 | 美女激清床上戏大全 | 99热国产这里只有精品免费 | 国语92电影网午夜福利 | 我们中文在线观看免费完整版 | 亚洲精品理论电影在线观看 | 久久精品亚洲AV无码三区观看 | 国产精品成久久久久三级四虎 | 轻点灬大ji巴太粗太双性高h | 乳女教师欲乱动漫无修版动画 | 久色乳综合思思在线视频 | 国产精品日本无码久久一老A | 在教室伦流澡到高潮H免费视频 | 找老女人泻火对白自拍 | 久青草国产在线视频 | 99久久久免费精品国产 | 最新色导航 | 亚洲精品午夜久久久伊人 | 久久这里只有精品1 | 自慰弄湿白丝袜 | 大香伊人久久精品一区二区 | 粉嫩极品国产在线观看 | 国内外成人免费在线视频 | jizz非洲| 伦理片92伦理午夜 | 久久99免费视频 | 久久久大香菇 | 亚洲九九视频 | 国产 亚洲 另类 欧美 在线 |