介紹
利用OCTave Photonics光頻梳偏頻鎖定模塊(COSMO)來檢測Menhir Photonics1550 nm1GHz飛秒激光器的載波包膜偏移頻率(fceo),可以在激光脈沖能量小于140 pJ(平均功率<140 mW)的情況下實現對fceo的精確控制,信噪比>35dB,以更低的尺寸、重量和功率要求實現了性能,該系統可以作為一種簡單的1GHz的超低噪聲光學頻率梳解決方案。
正文
光學頻率梳因其具有高精度、高靈敏度、高分辨率的特性,為光學原子鐘、精密光譜測量、阿秒科學等領域提供了一種可靠的光波-微波轉換工具。飛秒光梳本質上是一組特殊的飛秒脈沖光,它在時域上是一系列時間寬度在飛秒級別的超短脈沖,在頻域上是一系列間隔相等、位置固定、具有極寬光譜范圍的單色譜線。飛秒光梳實現了其頻率覆蓋范圍內所有波長的直接鎖定并溯源至微波頻率基準,建立起了光波頻率和微波頻率的直接聯系。基于飛秒鎖模激光器,目前一般可以通過鎖定其重復頻率(frep)和載波包絡偏移頻率(fceo)來使得光梳梳齒穩定。frep主要由諧振腔的幾何腔長L與介質折射率n決定,使用外加電壓調控壓電陶瓷制動器(PZT)的方法就可以實現對frep的鎖定。相比之下,鎖定fceo則更為困難,常見的方法是通過f-2f自參考過程,生成超連續譜將光譜展寬至至少一個倍頻程,然后將低頻倍頻后與高頻拍頻測得fceo后接入鎖相環反饋器件進行鎖定。雖然工作頻率接近100MHz重復頻率的光頻梳正在成為一種成熟的技術,但重復頻率為GHz的梳子仍然存在著大量挑戰。
首先,傳統的激光器架構很難構建低噪聲且重復頻率>0.5GHz的諧振結構,而MENHIR-1550飛秒激光器是一種在100MHz至5GHz的重復頻率下產生超低噪聲鎖模脈沖的穩定光源模塊系統。其次,f-2f自參考過程通常要求激光擁有至少1nJ的脈沖能量(即frep頻率=1GHz時,平均功率>1 W),這樣才能方便與干涉儀進行高精度對準。而zui近,Octave Photonics與Vescent Photonics合作,開發了一項新的整合與封裝技術。利用該項技術,光頻梳偏頻鎖定模塊(COSMO)為檢測激光頻率梳的載波包絡偏頻提供了一種緊湊的單箱解決方案。COSMO模塊利用納米光子波導技術將光限制在~1 μm的模式直徑。借助強烈的非線性光學效應,使得COSMO模塊允許以小于200 pJ (即frep頻率=1GHz時,平均功率<200?mW)的脈沖能量精確檢測fceo。zui后,由于1 GHz重復頻率的頻率梳的fceo可以從DC變化至500 MHz,因此為激光提供快速反饋所需的電子設備并非微不足道。新的Vescent Photonics SLICE偏移鎖相(SLICE-OPL)盒提供了一種直接的反饋解決方案,可在高達10 GHz的頻率下反饋穩定fceo。
圖11 GHz 1550 nm飛秒激光器載波包絡偏頻穩定實驗裝置
Menhir Photonics、Octave Photonics和VescentPhotonics的這三種突破性技術結合在一起,便簡單形成了一個1Ghz低噪聲飛秒激光頻率梳系統。在這個系統中,完全穩定的激光頻率梳可以在幾分鐘而不是幾天內構建出來。各個光學模塊間由保偏光纖相互連接,以簡化組裝難度并減少熱漂移。MENHIR-1550飛秒激光器的輸出首先通過一條90厘米長的色散補償光纖以補償系統中其他組件的色散。然后,1GHz脈沖序列通過光學放大器進行放大并進入COSMO模塊。COSMO模塊包含超連續譜產生波導、二次諧波產生材料以及一個光電探測器。經過f-2f自拍頻過程后,來自光電探測器的電信號通過一個以~380 MHz為中心頻率的可調諧帶通濾波器來選擇fceo,然后用一個額外的RF放大器進行放大。該信號連接到Vescent SLICE-OPL,該模塊為MENHIR-1550的泵浦電流提供反饋,以實現fceo穩定。使用射頻頻譜分析儀可以清晰記錄fceo頻譜和噪聲頻譜。在整個系統中,由于COSMO模塊的性能,放大器泵浦電流提供140 mW(140 pJ)即可優化fceo信號。
在偏頻鎖定COSMO模塊內部,光信號產生了超連續譜。超連續光譜顯示在780 nm附近有一個峰,而1560nm附近的光頻率加倍,也會影響780nm的光。為了在實驗上說明這個概念,我們將一個封裝的超連續譜產生裝置連接到放大器的輸出端。圖2顯示了放大器的窄帶頻譜是如何轉換為脈沖能量高約140 pJ的超寬超連續譜。
圖2 COSMO模塊產生的超連續統
接下來,我們將放大器輸出連接到COSMO模塊,并調整放大器以提供zui強的fceo信號。正如預期的那樣,信號優化到約140 pJ時,在300 kHz分辨率帶寬下,fceo的信噪比約為36 dB,在100 kHz分辨率帶寬下,信噪比約為42 dB(圖3)。這樣的信噪比數據對于fceo所需的精確可靠的鎖定來說綽綽有余。然后,我們將fceo電信號連接到Vescent SLICE-OPL并開始反饋控制,這使得我們能夠將fceo鎖定到任意RF頻率(圖3,右側藍色曲線)。當我們增加反饋的增益時,我們看到fceo的中心變窄,“相干尖峰”出現在中心(圖3,右側橙色曲線)。這表明我們實現了fceo的精確鎖相。在fceo鎖中觀察到的環內剩余相位噪聲如圖4所示,證實了對頻率低于40khz的相位噪聲有很強的抑制作用。
圖3 使用COSMO單元檢測載波包絡偏移頻率fceo峰值
圖4鎖定fceo的環內相位噪聲
利用Menhir Photonics的MENHIR-1550激光器,Octave Photonics的光頻梳偏頻鎖定模塊(COSMO)和Vescent Photonics的SLICE-OPL鎖相反饋模塊,可以輕松構建載波包絡偏頻穩定的飛秒激光系統,表明了目前能夠以更低的尺寸、重量和功率要求,該系統可以作為1GHz的超低噪聲光學頻率梳。
審核編輯 黃宇
-
激光器
+關注
關注
17文章
2538瀏覽量
60573 -
低噪聲
+關注
關注
0文章
211瀏覽量
22907
發布評論請先 登錄
相關推薦
評論