圖1.全向?qū)拵Оl(fā)射器件和角度非對(duì)稱(chēng)光譜選擇性發(fā)射器件在豎直表面的輻射換熱過(guò)程
熱輻射是自然界中最重要的能量傳遞方式之一。然而,傳統(tǒng)的黑體輻射因其非定向、非相干、寬光譜、無(wú)偏振等固有特性,致使輻射體與其周?chē)形矬w均進(jìn)行熱量交換,極大的制約了傳熱效率和熱流操控能力,進(jìn)而限制了其實(shí)際應(yīng)用。
以輻射制冷為例,過(guò)往的輻射制冷器件通常呈現(xiàn)出全向的熱輻射特性,因此僅適用于開(kāi)闊的水平表面(如屋頂),以便最大限度的面向溫度較低的天空,并盡可能的隔絕器件與地面、周?chē)矬w、大氣非透明窗口波段向下輻射等的熱量交換。然而,當(dāng)它們被用于豎直表面(如墻面、衣物、車(chē)輛側(cè)面等廣泛實(shí)際場(chǎng)景)時(shí),器件面向低溫天空的視場(chǎng)角顯著縮小,同時(shí)不得不大量吸收地面(尤其在亟需制冷的夏日,地表溫度遠(yuǎn)高于環(huán)境溫度)、周?chē)矬w以及大氣非透明窗口波段向下輻射等的熱量,從而導(dǎo)致其亞環(huán)境輻射制冷失效。盡管近年來(lái)一些國(guó)際研究團(tuán)隊(duì)嘗試調(diào)控?zé)彷椛涞墓庾V或角度,但豎直表面的日間亞環(huán)境輻射制冷仍然面臨著巨大的挑戰(zhàn)。
據(jù)此,中國(guó)科學(xué)院長(zhǎng)春光機(jī)所李煒研究員團(tuán)隊(duì)與合作者,利用熱光子學(xué)手段,實(shí)現(xiàn)了熱輻射角度和光譜的跨波段協(xié)同調(diào)控,進(jìn)而設(shè)計(jì)出具有跨尺度對(duì)稱(chēng)破缺性、角度非對(duì)稱(chēng)光譜選擇性的定向發(fā)射器件(AS 發(fā)射器件),實(shí)現(xiàn)了豎直表面的日間亞環(huán)境輻射制冷。相關(guān)成果以“Subambient daytime radiative cooling of vertical surfaces ”為題發(fā)表于Science,并獲3項(xiàng)授權(quán)專(zhuān)利。
該工作不僅攻克了豎直表面的日間亞環(huán)境輻射制冷,對(duì)輻射制冷的實(shí)際應(yīng)用具有重大意義;同時(shí)突破了熱輻射角度、光譜的跨波段協(xié)同調(diào)控能力,為熱光子學(xué)操控打開(kāi)了全新局面。該成果是長(zhǎng)春光機(jī)所在Science上刊發(fā)的首篇第一單位文章,也是李煒研究員及其團(tuán)隊(duì)繼今年在Nature發(fā)表“基于光子學(xué)角度/光譜協(xié)同調(diào)控的高維光場(chǎng)信息感知工作”之后的又一突破性工作。該工作歷時(shí)4年,得到了國(guó)家自然科學(xué)基金委創(chuàng)新研究群體項(xiàng)目、重點(diǎn)項(xiàng)目等資助,以及共作者:斯坦福大學(xué)范汕洄教授團(tuán)隊(duì),紐約城市大學(xué)Andrea Alu教授團(tuán)隊(duì),長(zhǎng)春光機(jī)所黎大兵研究員團(tuán)隊(duì)、張志宇研究員、田思聰研究員,和北京大學(xué)肖云峰教授的鼎力支持。
該研究指出,由于大氣透過(guò)率隨天頂角增大而減小,對(duì)于豎直表面而言,其法向方向是大氣透過(guò)率最低的方向,導(dǎo)致其極限制冷功率僅為 ~40 W m-2(比水平表面的一半還低)。另一方面,與水平表面相比,豎直表面不僅會(huì)吸收太陽(yáng)的直接照射,還會(huì)吸收來(lái)自地面反射的太陽(yáng)光。這些因素進(jìn)一步對(duì)豎直表面的太陽(yáng)光反射率以及紅外熱輻射的角度及光譜特性提出了更嚴(yán)苛的要求。
圖2.AS發(fā)射器件的設(shè)計(jì)
據(jù)此,該研究從太陽(yáng)反射率、大氣透明窗口內(nèi)的光譜選擇性、熱輻射角度非對(duì)稱(chēng)特性協(xié)同設(shè)計(jì),以熱力學(xué)、互易性、波導(dǎo)以及聲子激化共振等理論為基礎(chǔ),利用跨尺度對(duì)稱(chēng)破缺結(jié)構(gòu)實(shí)現(xiàn)了熱輻射在空間角度上的非對(duì)稱(chēng)分布以及在光譜上的選擇性調(diào)控。
具體來(lái)說(shuō),首先,研究人員設(shè)計(jì)了打破鏡面對(duì)稱(chēng)性的鋸齒光柵結(jié)構(gòu),其傾斜表面最外側(cè)的Ag層可以有效抑制地面發(fā)射的熱輻射,而其橫向表面上的SiN層可以向天空發(fā)射光譜選擇性熱輻射,從而提供角度非對(duì)稱(chēng)的熱輻射特性。值得注意的是,由于熱力學(xué)和互易性的限制,鋸齒光柵周期必須遠(yuǎn)大于波長(zhǎng)才能實(shí)現(xiàn)角度非對(duì)稱(chēng)并支持光耦合的準(zhǔn)連續(xù)頻率覆蓋。另一方面,鋸齒光柵表面的Ag層,可以有效阻擋太陽(yáng)光進(jìn)入鋸齒光柵內(nèi)部,從而避免由多次反射造成的太陽(yáng)光吸收。此外,為了進(jìn)一步提高發(fā)射器在太陽(yáng)光譜的反射率,一層孔隙尺寸為0.3μm至1 μm的多孔聚乙烯薄膜(nanoPE)被覆蓋在鋸齒結(jié)構(gòu)表面。Ag層和nanoPE薄膜的結(jié)合可以在整個(gè)太陽(yáng)光譜范圍內(nèi)產(chǎn)生強(qiáng)烈反射。與此同時(shí),nanoPE薄膜的深度亞波長(zhǎng)孔隙尺寸使其在紅外波段具有可以忽略不計(jì)的散射效率,確保了其較高的紅外透射率以及AS發(fā)射器的角度非對(duì)稱(chēng)光譜選擇性輻射特性。
圖3.戶(hù)外輻射制冷性能測(cè)試
為了驗(yàn)證AS發(fā)射器的全天候輻射制冷性能,該研究在晴朗的夏季進(jìn)行了24小時(shí)連續(xù)的室外溫度測(cè)量。在一整天中,AS發(fā)射器的表面溫度始終低于環(huán)境溫度。即使在炎熱的正午,AS發(fā)射器仍然保持約2.5°C的亞環(huán)境輻射制冷性能,且相較于常規(guī)高性能輻射制冷器件和商用白漆分別低4.3℃和8.9℃。此外,該研究還展示了,AS發(fā)射器在任意朝向下始終保持著亞環(huán)境輻射制冷性能。
圖4.考慮建筑之間熱輻射影響的實(shí)驗(yàn)與理論分析
此外,為探究AS發(fā)射器在實(shí)際場(chǎng)景中的制冷性能,該研究還考慮了建筑物之間的熱輻射影響,并將所有發(fā)射器都面向正午最熱的南向墻壁。得益于AS發(fā)射器的角度與光譜協(xié)同調(diào)控能力,通過(guò)改變鋸齒光柵的寬高比,可以很容易地調(diào)控?zé)彷椛涞陌l(fā)射角度范圍。因此,即使考慮建筑物之間的熱輻射,AS發(fā)射器的亞環(huán)境輻射制冷也始終有效,且其表面溫度比常規(guī)高性能輻射制冷器件和商業(yè)白漆分別低3.5°C和4.6°C。在如上實(shí)驗(yàn)驗(yàn)證之外,該研究還從理論上分析了考慮建筑間熱輻射時(shí),制冷功率的理論極限。
綜上,該研究不僅攻克了豎直表面的日間亞環(huán)境輻射制冷,對(duì)輻射制冷的實(shí)際應(yīng)用、節(jié)能減排具有重大意義;同時(shí)突破了熱輻射角度、光譜的跨波段協(xié)同調(diào)控能力,展現(xiàn)了高自由度的熱光子學(xué)操控能力,為操控?zé)崃骱托畔?如新型的高效冷卻、加熱、能量傳輸以及在空間光學(xué)系統(tǒng)中的高精度熱控等)提供了嶄新機(jī)遇。
審核編輯 黃宇
-
光譜
+關(guān)注
關(guān)注
4文章
832瀏覽量
35236 -
光機(jī)
+關(guān)注
關(guān)注
0文章
27瀏覽量
6688
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論