色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

下一代SDR收發器,所用算法是重要方面

貿澤電子設計圈 ? 來源:互聯網 ? 作者:佚名 ? 2017-09-18 10:04 ? 次閱讀

優勢”總是和“挑戰”站在一起,

即使被稱為

“下一代SDR收發器中的黑魔法”,

“零中頻”現在也面臨一個亟待克服的挑戰——

發射本振泄漏,簡稱“發射LOL”。

未校正的發射LOL會在所需發射范圍內產生無用發射,造成潛在的違反系統規范的風險。本文論述發射LOL的問題,并介紹在ADI的RadioVerse? 收發器系列中實現的可消除此問題的技術。如果可以將發射LOL降低到足夠低的水平,使其不再導致系統或性能問題,也許人們就可以不必為LOL問題而煩惱!

什么是LOL?

RF混頻器有兩個輸入端口和一個輸出端口,如圖1所示。理想混頻器將產生一個輸出,它是兩個輸入的乘積。就頻率而言,該輸出的頻率應當是FIN + FLO以及FIN – FLO,不含其它項。如果任一輸入不在驅動狀態下,則不會有輸出。

圖1. 理想混頻器

在圖1中,FIN被設置為基帶頻率為1 MHz的FBB,FLO被設置為本振頻率為500 MHz的FLO。如果是理想混頻器,它將產生一個輸出,其中包含兩個信號音,頻率分別為499 MHz和501 MHz。

然而,如圖2所示,在FBB和FLO,真實混頻器還將產生一些能量。FBB處產生的能量可以忽略不計,因為它遠離所需的輸出,并且將被混頻器輸出之后的RF組件濾除。無論FBB處產生的能量如何,FLO下產生的能量都可能是一個問題。它非常接近或在所需的輸出信號內,并且很難或無法通過濾波去除,因為濾波也會濾除所需的信號。

圖2. 真實混頻器

LO應該用小一號或兩號的字體下產生的這種無用能量被稱為LOL。可驅動混頻器的本振 (LO) 已經泄漏到混頻器的輸出端口。LO還有其他途徑可以泄漏到系統輸出端,例如通過電源或跨越硅本身。無論本振如何泄漏,其泄漏都可被稱為LOL。

在只發射一個邊帶的實信號中頻架構中,可以通過RF濾波解決LOL問題。相比之下,在發射兩個邊帶的零中頻架構中,LOL位于所需輸出的中間,并形成了難度更高的挑戰(見圖3)。

圖3. FLO下產生的無用能量(以紅色顯示),FLO下產生的這一無用能量被稱為LOL

傳統濾波不再是一種選擇,因為任何去除LOL的濾波也會去除部分所需發射信號。因此,必須使用其他技術來消除LOL。否則,它最終在整個所需發射范圍內可能會成為無用發射。

消除LO泄漏(也稱為LOL校正)

生成幅度相等但相位與LOL相反的信號即可實現LOL消除,從而將其抵消,如圖4所示。假設我們知道LOL的確切幅度和相位,則可以對發射器輸入施加直流失調來生成抵消信號。

圖4. LO泄漏和抵消信號

抵消信號的生成

復數混頻器架構適用于生成抵消信號。由于混頻器中存在LO頻率的正交信號(它們是復數混頻器如何工作的關鍵),因此允許生成任何相位和幅度的LO頻率信號。

用于驅動復數混頻器的正交信號可以描述為Sin(LO)和Cos(LO) —這些是LO頻率的正交信號,可以驅動兩個混頻器。為了生成抵消信號,這些正交信號以不同的權重相加。就數學而言,我們可以產生一個輸出,即I × Sin(LO) + Q × Cos(LO)。運用不同的帶符號值代替I和Q,得到的和將是LO頻率信號,并且可以具有任何所需的幅度和相位。示例如圖5所示。

圖5. 生成的任何相位和任何幅度抵消信號的示例

所需的發射信號將需要應用于發射器的輸入。對發射數據施加直流偏置后,混頻器的輸出端將包含所需的發射信號以及所需的LOL抵消信號。特意生成的抵消信號將與無用的LOL組合抵消,僅留下 所需的發射信號。

觀測發射LOL

如圖6所示,使用觀測接收器來觀測發射LOL。在該示例中,觀測接收器使用與發射器相同的LO,因此LO頻率的任何發射能量都將在觀測接收器的輸出端顯示為直流。

圖6. 觀測與校正TxLO泄漏的基本概念

圖6所示的方法有其內在缺陷:使用相同的LO來發射和觀測,發射LOL將在觀測接收器的輸出端顯示為直流。由于電路中的元件不匹配,觀測接收器本身將具有一定量的直流,因此觀測接收器的總直流輸出將是發射鏈路中存在的發射LOL與觀測鏈路原生直流失調。有一些方法可以克服這個問題,但是更好的方法是使用不同的LO頻率進行觀測,從而將觀測路徑中的原生直流從發射LOL觀測結果中分離出來。這種情況如下面的圖7所示。

圖7. 使用不同LO發射和觀測

由于使用了不同于發射LO的頻率來觀測,因此在觀測接收器中,發射LO頻率的能量不會以直流出現。相反,它將顯示為頻率等于發射LO與觀測LO之差的基帶信號音。觀測路徑中的原生直流仍然會以直流出現,因此會將觀測直流與發射LOL測量結果完全分離。

為簡單起見,圖8使用單一混頻器架構說明了這一概念。在該示例中,發射器的輸入為零,因此其唯一輸出是發射LOL。頻移在觀測接收器之后完成,將發射LOL觀測到的能量移動到直流。

圖8. 從Tx LOL分離觀測接收器直流

找出必要的校正值

將觀測接收器的輸出除以從發射輸入到觀測接收器輸出的傳遞函數,并將得出的結果與預期發射進行比較,找出所需的校正值。涉及的傳遞函數如圖9所示。

圖9. 從發射器輸入到觀測接收器輸出的傳遞函數

從發射器基帶輸入到觀測接收器基帶輸出的傳遞函數由幅度縮放和相位旋轉兩部分組成。下文對此分別做了更詳細的說明。

圖10表明如果從發射輸出到觀測接收器輸入的回送路徑中具有增益或衰減,或者如果發射器電路的增益與觀測接收器電路的增益不同,則觀測接收器報告的發射信號的幅度可能不代表所發射信號的實際幅度。

圖10. 回送路徑衰減引起的幅度縮放

現在來看相位旋轉。重要的是要意識到信號不會從點A瞬間傳輸到點B。例如,信號以約光速的一半速度經過銅,這表示沿銅條傳輸的3 GHz信號的波長約為5厘米。這意味著如果使用間隔幾厘米的多個示波器探頭探測銅條,則示波器將顯示彼此不同相位的多個信號。圖11對這一原理進行了說明,圖中所示為沿銅條隔開的三個示波器探頭。每個點看到的信號頻率為3 GHz,但三個信號之間存在相位差。

圖11. 距離與相位的關系,5 cm走線,3 GHz信號,以及0 cm、2 cm和4 cm處的探頭點

需要注意的是,沿銅帶移動單個示波器探頭將不會顯示此效應,因為示波器將始終在0°相位觸發。只有使用多個探頭才能觀測到距離與相位之間的關系。

正如沿銅條出現相位變化一樣,從發射器輸入到觀測接收器輸出將發生相位變化,如圖12所示。LOL校正算法必須知道發生了多少相位旋轉,以便計算出正確的校正值。

圖12. 回送路徑中物理距離引起的相位旋轉

確定從發射輸入到觀測接收器輸出的傳遞函數

施加發射器輸入信號并將其與觀測接收器的輸出進行比較即可得到圖13所示的傳遞函數。但有些要點需要牢記。如果靜態 (dc) 信號被施加到發射器輸入,它將產生一個發射LO頻率的輸出,并且發射LOL將與其相結合。這將會妨礙正確得到傳遞函數。還應注意,發射輸出端可以連接到天線,因此故意向發射器輸入端施加信號可能是不被允許的。

圖13. 確定從發射器輸入到觀測接收器輸出的傳遞函數

為了解決這些挑戰,ADI收發器使用一種將低電平直流失調應用于發射信號的算法。周期性調整失調電平,觀測接收器的輸出會顯示這些擾動。然后,該算法分析比較觀測值增量與輸入值差值,如表1所示。在該示例中,沒有發射用戶信號,但是該方法在用戶信號存在時仍然適用。

表1. 觀測值增量與輸入值增量的比較

執行兩種情況的減法,從等式中消除恒定發射LOL,即可獲得傳遞函數。可以擴大到兩種情形以上,可對許多獨立結果取平均值以提高準確性。

小結

LOL校正算法將能學習從發射輸入到觀測接收器輸出的傳遞函數。然后將觀測接收器的輸出除以傳遞函數,得出發射器的輸入。將預期發射的直流電平與觀測到的發射直流電平進行比較,即可確定發射LOL。最后,該算法將計算消除發射LOL所必需的校正值,并將其作為直流偏置應用于所需的發射數據。

本文概述了ADI的RadioVerse收發器所用算法的一個方面。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 收發器
    +關注

    關注

    10

    文章

    3454

    瀏覽量

    106175
  • ADI
    ADI
    +關注

    關注

    146

    文章

    45859

    瀏覽量

    251285
  • SDR
    SDR
    +關注

    關注

    7

    文章

    234

    瀏覽量

    50542

原文標題:發射本振泄漏!如何破?看這篇就對了!

文章出處:【微信號:Mouser-Community,微信公眾號:貿澤電子設計圈】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    意法半導體下一代汽車微控制的戰略部署

    汽車的開發。下面就讓意法半導體微控制、數字IC和射頻產品部(MDRF)總裁Remi EL-OUAZZANE揭秘ST下一代汽車微控制的戰略部署。
    的頭像 發表于 11-07 14:09 ?457次閱讀

    控制當前和下一代功率控制的輸入功率

    電子發燒友網站提供《控制當前和下一代功率控制的輸入功率.pdf》資料免費下載
    發表于 09-18 11:31 ?0次下載
    控制當前和<b class='flag-5'>下一代</b>功率控制<b class='flag-5'>器</b>的輸入功率

    通過電壓轉換啟用下一代ADAS域控制應用說明

    電子發燒友網站提供《通過電壓轉換啟用下一代ADAS域控制應用說明.pdf》資料免費下載
    發表于 09-11 11:32 ?0次下載
    通過電壓轉換啟用<b class='flag-5'>下一代</b>ADAS域控制<b class='flag-5'>器</b>應用說明

    實現下一代具有電壓電平轉換功能的處理、FPGA 和ASSP

    電子發燒友網站提供《實現下一代具有電壓電平轉換功能的處理、FPGA 和ASSP.pdf》資料免費下載
    發表于 09-09 09:46 ?0次下載
    實現<b class='flag-5'>下一代</b>具有電壓電平轉換功能的處理<b class='flag-5'>器</b>、FPGA 和ASSP

    光纖收發器怎么判斷好壞

    光纖收發器作為光纖通信系統中的關鍵設備,其性能直接影響到整個網絡的傳輸質量和穩定性。因此,準確判斷光纖收發器的好壞是確保網絡正常運行的重要步驟。以下是從多個方面綜合評估光纖
    的頭像 發表于 08-26 15:11 ?1085次閱讀

    光纖收發器的作用和分類

    光纖收發器,作為種在光纖通信系統中至關重要的設備,其作用和分類對于理解光纖通信技術的運作原理及選擇合適的設備至關重要。以下將詳細闡述光纖收發器
    的頭像 發表于 08-26 14:45 ?994次閱讀

    光纖收發器pwr是什么意思

    光纖收發器種將電信號轉換為光信號或將光信號轉換為電信號的設備,廣泛應用于通信、網絡、監控等領域。在光纖收發器的參數中,PWR是個非常重要
    的頭像 發表于 08-23 10:30 ?1557次閱讀

    蘋果暫停下一代高端頭顯研發

    近日,科技巨頭蘋果公司宣布了重要調整,即暫停下一代高端頭顯Vision Pro的研發計劃。這決定引發了業界的廣泛關注與討論。
    的頭像 發表于 06-21 09:54 ?526次閱讀

    24芯M16插頭在下一代技術中的潛力

      德索工程師說道隨著科技的飛速發展,下一代技術正逐漸展現出其獨特的魅力和潛力。在這背景下,24芯M16插頭作為種高性能、多功能的連接,將在
    的頭像 發表于 06-15 18:03 ?372次閱讀
    24芯M16插頭在<b class='flag-5'>下一代</b>技術中的潛力

    汽車CAN收發器的作用、原理及構成

    隨著汽車電子技術的飛速發展,汽車CAN收發器作為汽車電子系統中的重要組成部分,其重要性日益凸顯。汽車CAN收發器不僅關乎到汽車內部各個模塊之間的通信,還涉及到汽車的安全、性能以及智能化
    的頭像 發表于 05-24 15:33 ?2120次閱讀

    賽輪思與NVIDIA合作,利用生成式AI打造下一代車內體驗

    AI 驅動的移動出行創新企業與 NVIDIA 合作,打造下一代車內體驗。
    的頭像 發表于 05-23 10:12 ?1282次閱讀

    使用NVIDIA Holoscan for Media構建下一代直播媒體應用

    NVIDIA Holoscan for Media 現已向所有希望在完全可重復使用的集群上構建下一代直播媒體應用的開發者開放。
    的頭像 發表于 04-16 14:04 ?728次閱讀

    光纖收發器有距離限制嗎怎么設置

    光纖收發器是光纖通信系統中的重要組成部分,用于將電信號轉換為光信號以在光纖中傳輸數據。光纖收發器的距離限制是指在定的傳輸距離范圍內,保證光信號的傳輸品質和可靠性。
    的頭像 發表于 04-09 16:52 ?1614次閱讀

    怎么區分單模多模光纖收發器

    在光纖通信系統中,單模光纖收發器和多模光纖收發器是兩種不同的設備,它們的工作原理和特點有所不同。為了區分單模多模光纖收發器,可以從以下幾個方面進行區分: 光纖類型:單模光纖
    的頭像 發表于 03-12 10:48 ?1629次閱讀

    科博達獲大眾集團下一代LED大燈控制項目定點

    近日,科博達宣布已成功獲得德國奧迪下一代LED大燈控制“平臺件”的項目定點。這一重要的里程碑標志著科博達在汽車照明控制領域取得了重大突破。
    的頭像 發表于 02-02 15:38 ?780次閱讀
    主站蜘蛛池模板: 99久久免热在线观看 | 99视频精品免视3 | 午夜影院视费x看 | 色欲天天天综合网免费 | 女朋友的妈妈在线观看 | 亚洲中文字幕乱码熟女在线 | 九九热在线视频观看这里只有精品 | 无码成人AAAAA毛片含羞草 | 草莓视频在线观看免费观看高清 | 日韩欧美国产免费看清风阁 | 中国jjzz | 国产精品1区2区 | 精选国产AV精选一区二区三区 | 美女扒开腿让男生桶爽免费APP | 美女内射视频WWW网站午夜 | adc高清在线观看 | 看 视频一一级毛片 | 我的美女房东未删减版免费观看 | 国产免费播放一区二区三区 | 午夜免费体验30分 | 99国产精品久久久久久久日本竹 | 久久亚洲精品成人综合 | 99精品久久久久久久 | 国产亚洲精品久久综合阿香蕉 | 97久久超碰中文字幕 | 粗好大用力好深快点漫画 | 巨爆乳中文字幕爆乳区 | 国产精品一久久香蕉国产线看 | 国产中文在线观看 | 青青伊人网 | 国产在线观看成人 | 最新日本免费一区 | 国产一区二区三区内射高清 | 国产日韩欧美另类 | 国产精品免费一区二区三区四区 | 肉动漫无修在线播放 | 蜜桃臀无码内射一区二区三区 | 精品人妻无码一区二区三区蜜桃臀 | 日本熟妇乱妇熟色A片蜜桃 日本熟妇多毛XXXXX视频 | 超碰在线视频 | 青青久在线视频免费观看 |