色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于 GaN 的 MOSFET 如何實現高性能電機逆變器

深圳市浮思特科技有限公司 ? 2024-05-23 10:56 ? 次閱讀

推動更高效的能源利用、更嚴格的監管要求以及研發了冷卻操作的技術都能夠實現減少電動機的功耗,雖然硅 MOSFET 等開關技術已得到廣泛應用,但它們通常無法滿足關鍵逆變器應用更苛刻的性能和效率目標。

相反,設計人員可以使用氮化鎵 (GaN) 來實現這些目標,氮化鎵是一種寬帶隙 (WBG) FET 器件技術,在成本、性能、可靠性和易用性方面都得到了改進和進步。GaN器件是主流,已成為中檔功率逆變器的首選。

wKgaomZOr_mAUJw0AADbBlXSY_A195.png圖1:GaN FET 是一款帶有集成焊條的鈍化芯片器件。來源:Bodo

什么是逆變器?

逆變器產生并調節驅動電機的電壓波形,通常是無刷直流(BLDC) 類型。它控制電機速度和扭矩,以實現平穩啟動和停止、反向和加速率等要求。盡管負載發生變化,逆變器必須確保實現并維持所需的電機性能。

具有變頻輸出的電機逆變器不應與交流線路逆變器混淆。后者從汽車電池等電源獲取直流電,以提供固定頻率的 120/240 V 交流波形,該波形近似于正弦波,可以為線路操作設備供電。

GaN 器件相對于硅具有吸引人的特性,包括更高的開關速度、更低的漏源導通電阻 (RDS(ON)) 和更好的熱性能。較低的 RDS(ON) 使它們能夠用于更小更輕的電機驅動器,并減少功率損耗,從而節省電動自行車和無人機等應用的能源和成本。

較低的開關損耗可實現更高效的電機驅動器,延長輕型電動汽車的續航里程。更快的開關速度可實現低延遲電機響應,這對于需要精確電機控制的應用(例如機器人)至關重要。GaN FET 還可用于開發更強大、更高效的叉車電機驅動器。GaN FET 的更高電流處理能力使它們能夠用于更大、更強大的電機。

最終應用的底線優勢是減小尺寸和重量、提高功率密度和效率以及更好的熱性能。

GaN入門講解

任何電源開關器件的設計,尤其是中檔電流和電壓的器件,都需要關注器件的最小細節和獨特特性。GaN 器件有兩種內部結構選擇:耗盡型 (d-GaN) 和增強型 (e-GaN)。d-GaN 開關通常處于“開啟”狀態,需要負電源;設計成電路更加復雜。相比之下,e-GaN 開關通常是“關閉”晶體管,這導致電路架構更簡單。

GaN 器件本質上是雙向的,一旦其兩端的反向電壓超過柵極閾值電壓,就會開始導電。此外,由于它們在設計上無法以雪崩模式運行,因此具有足夠的電壓額定值至關重要。對于降壓、升壓和橋式直流轉換拓撲,在總線電壓高達 480 V 時,600 V 的額定值通常就足夠了。

盡管 GaN 開關的基本開關功率開關功能很簡單,但它們是功率器件,因此設計人員必須仔細考慮開通和關斷驅動要求、開關時序、布局、寄生效應的影響、電流控制流動,電路板上的電流電阻 (IR) 下降。

對于許多設計人員來說,評估套件是了解 GaN 器件功能以及如何使用它們的最有效方法。這些套件使用不同配置和功率級別的單個和多個 GaN 器件。它們還包括相關的無源元件,包括電容器電感器、電阻器、二極管、溫度傳感器、保護器件和連接器

EPC2065 是低功耗 GaN FET 的極佳示例。其漏源電壓 (VDS) 為 80 V,漏極電流 (ID) 為 60 安培 (A),RDS(ON) 最大值為 3.6 毫歐 (mΩ)。它僅以帶焊條的鈍化芯片形式供應,尺寸為 3.5 × 1.95 毫米 (mm)。

與其他 GaN 器件一樣,EPC2065 的橫向器件結構和多數載流子二極管可提供極低的總柵極電荷 (QG) 和零反向恢復電荷 (QRR)。這些屬性使其非常適合需要非常高的開關頻率(高達數百千赫茲)和低導通時間的情況,以及那些通態損耗占主導地位的情況。

兩個類似的評估套件支持該器件:用于 20 A/500 W 運行的 EPC9167KIT 和用于 20 A/1 千瓦 (kW) 運行的更高功率 EPC9167HCKIT(圖 2)。兩者都是三相BLDC 電機驅動逆變器板。

wKgaomZOsBeAJymIAAEls9wt7QU598.png圖2:EPC9167 板的底部(左)和頂部(右)。來源:Bodo電力系統

基本 EPC9167KIT 配置為每個開關位置使用單個 FET,每相可提供高達 15 ARMS(標稱值)和 20 ARMS(峰值)的電流。相比之下,電流較高的 EPC9167HC 配置在每個開關位置使用兩個并聯 FET,可提供高達 20 ARMS/30 ARMS(標稱/峰值)輸出電流的最大電流,這證明了 GaN FET 的并聯配置相對容易更高的輸出電流。圖 3 顯示了基礎 EPC9167 板的框圖。

wKgaomZOsCSABYX3AAC5_xidC9E077.png圖3:BLDC 驅動應用中的基礎 EPC9167 板框圖;較高功率的 EPC9167HC 每個開關有兩個并聯的 EPC2065 器件,而較低功率的 EPC9167 每個開關只有一個 FET。來源:Bodo電力系統

EPC9167KIT 包含支持完整電機驅動逆變器的所有關鍵電路,包括柵極驅動器、用于內務電源的穩壓輔助電源軌、電壓檢測、溫度檢測、電流檢測和保護功能。

EPC9167 可與多種兼容控制器配對,并得到多家制造商的支持。它可以利用現有資源快速配置為電機驅動逆變器,實現快速開發。

獲得更高的功率

功率處理范圍的另一端是 EPC2302,這是一款 GaN FET,額定值為 100 V/101 A,最大 RDS(ON) 為 1.8 mΩ。它非常適合 40 至 60 V 的高頻 DC-DC 應用和 48 V BLDC 電機驅動器。與 EPC2065 使用的帶焊條的鈍化芯片封裝不同,這款 GaN FET 采用 3 × 5 mm 的低電感 QFN 封裝,頂部裸露,可實現卓越的熱管理。

外殼頂部的熱阻很低,僅為每瓦 0.2°C,這可實現出色的熱性能并緩解冷卻挑戰。其裸露的頂部增強了頂部熱管理,而側面可潤濕的側面可確保整個側焊盤表面在回流焊接過程中被焊料潤濕。這可保護銅并允許在此外部側面區域進行焊接,以便于進行光學檢查。

EPC2302 的占位面積不到同類最佳硅 MOSFET 的一半,且 RDS(on) 和額定電壓相似,而其 QG 和 QGD 則明顯較小,且其 QRR 為零。這可降低開關損耗和柵極驅動器損耗。EPC2302 的死區時間很短,僅為數十納秒 (ns),可提高效率,而其零值 QRR 可提高可靠性并最大限度地減少電磁干擾 (EMI)。

為了測試 EPC2302,EPC9186KIT 電機控制器/驅動器電源管理評估板支持高達 5 kW 的電機,并可提供高達 150 ARMS 和 212 APEAK 的最大輸出電流(圖 4)。

wKgaomZOsDqAZi2vAAEgbMeG9AY851.png圖4:EPC2302 的 EPC9186KIT 5 kW 評估板的頂部(左)和底部(右)。來源:Bodo電力系統

EPC9186KIT 在每個開關位置使用四個并聯 GaN FET 來實現更高的額定電流,這證明了使用這種方法可以輕松達到更高的電流水平。該板在電機驅動應用中支持高達 100 kHz 的 PWM 開關頻率。它包含支持完整電機驅動逆變器的所有關鍵功能,包括柵極驅動器、穩壓輔助內務電源、電壓和溫度感測、精確電流感測以及保護功能。

電機逆變器是基本電源與電機之間的關鍵連接。設計更小、更高效、更高性能的逆變器是一個越來越重要的目標。雖然設計人員可以選擇中檔逆變器使用的關鍵電源開關器件的工藝技術,但 GaN 器件是首選。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    147

    文章

    7216

    瀏覽量

    213893
  • 逆變器
    +關注

    關注

    288

    文章

    4749

    瀏覽量

    207404
  • 電機
    +關注

    關注

    142

    文章

    9070

    瀏覽量

    146069
收藏 人收藏

    評論

    相關推薦

    用于電機控制的GaN技術

    基于氮化鎵 (GaN) 的高電子遷移率晶體管 (HEMT) 器件具有出色的電氣特性,是高壓和高開關頻率電機控制應用中 MOSFET 和 IGBT 的有效替代品。我們在這里的討論集中在 GaN
    發表于 07-27 14:03 ?2177次閱讀
    用于<b class='flag-5'>電機</b>控制的<b class='flag-5'>GaN</b>技術

    GaN FET重新定義電源電路設計

    的好處。雖然增強型GaN器件仍然比硅MOSFET更昂貴,但它們更適合于電源設計,并提供了大大提高性能和效率的設計路徑。高壓設計案例開關電源(SMPS)設計是提高效率和節約能源的答案。大多數新設計都采用
    發表于 05-03 10:41

    GaN晶體管與其驅動器的封裝集成實現高性能

    的開關速度比硅MOSFET快很多,從而有可能實現更低的開關損耗。然而,當壓擺率很高時,特定的封裝類型會限制GaN FET的開關性能。將GaN
    發表于 08-30 15:28

    GaN HEMT在電機設計中有以下優點

    器件的商業可用性,比如電機逆變器GaN HEMT和直流部分的高性能電容器正在不斷滿足設計人員對于大功率電機驅動的可靠性需求,這些關鍵部件讓
    發表于 07-16 00:27

    柵極驅動器隔離柵的耐受性能怎么樣?

    在高度可靠、高性能的應用中,如電動/混合動力汽車,隔離柵級驅動器需要確保隔離柵在所有情況下完好無損。隨著Si-MOSFET/IGBT不斷改進,以及對GaN和SiC工藝技術的引進,現代功率轉換器/
    發表于 08-09 07:03

    如何實現PMSM高性能控制

    前言 永磁同步電機(PMSM)應用范圍廣泛,經常用于新能源汽車、機床、工業等領域。在實際使用中,我們經常采用矢量控制算法(FOC)完成PMSM的高性能控制。 矢量控制中通常采用雙閉環結構,其中外環為
    發表于 08-27 06:45

    GaN 逆變器用于電池供電的電機驅動應用

    下降沿電流檢測同相與腿分流器在用于電機驅動的逆變器中使用分立式 eGaN FET 或 GaN ePowerTM 級 IC 時,通常將同相電流分流器與隔離(功能或電流)IC 一起使用,以提取分流電阻器上
    發表于 03-25 11:02

    剖析用于電池驅動電機驅動應用的GaN-ePower-Stage IC逆變器

    通過消除輸入濾波器中的電解電容器,GaN 晶體管和 IC 可以提高電機驅動應用中的功率密度。GaN的卓越開關行為有助于消除死區時間并獲得無與倫比的正弦電壓和電流波形,從而實現更平穩、靜
    發表于 03-25 11:05

    GaN和SiC區別

    GaN由于具有更大輸出功率與更快作業頻率,已被看好可取代硅元件成為下一世代的功率元件。近年來全球對于都市基礎建設、新能源、節能環保等方面的政策支持,擴大對于SiC/GaN高性能功率元件的需求,將進一步促進SiC/
    發表于 08-12 09:42

    GaN為硅MOSFET提供的主要優點和優勢

    ,幾代MOSFET晶體管使電源設計人員實現了雙極性早期產品不可能實現性能和密度級別。然而,近年來,這些已取得的進步開始逐漸弱化,為下一個突破性技術創造了空間和需求。這就是氮化鎵(
    發表于 11-14 07:01

    如何利用氮化鎵實現高性能柵極驅動?

    ,固有的快速開關瞬變,缺乏反向恢復和高溫工作能力。這些優異的性能似乎是高性能功率轉換器的完美組合。  然而,要實現GaN性能潛力,必須考慮
    發表于 02-24 15:09

    用于電機集成的400W逆變器設計方案

    近十年來,單相電網用igbt無刷直流電機逆變器進展甚微。采用精確柵極驅動的GaN fet(如Navitas GaN功率ic)可以提高性能。系
    發表于 06-16 07:53

    通過硅和GaN實現高性能電源設計

    MasterGaN 將硅與 GaN 相結合,以加速創建下一代緊湊型高效電池充電器和電源適配器,適用于高達 400 W 的消費和工業應用。通過使用 GaN 技術,新設備可以處理更多功率,同時優化其效率。ST 強調了將 GaN 與驅
    發表于 07-27 08:03 ?503次閱讀
    通過硅和<b class='flag-5'>GaN</b><b class='flag-5'>實現</b><b class='flag-5'>高性能</b>電源設計

    什么是編碼器,它如何提高逆變器電機驅動系統的性能?

    驅動系統提高了電機控制性能,從而可以改善要求嚴苛應用的質量和同步功能。如圖1所示,功率級使用了功率逆變器高性能位置檢測以及電流/電壓閉環反饋,因此
    的頭像 發表于 08-09 08:09 ?827次閱讀
    什么是編碼器,它如何提高<b class='flag-5'>逆變器</b>和<b class='flag-5'>電機</b>驅動系統的<b class='flag-5'>性能</b>?

    水下航行器電機的SiC MOSFET逆變器設計

    利用 SiC 功率器件開關頻率高、開關損耗低等優點, 將 SiC MOSFET 應用于水下航行器大功率高速電機逆變器模塊, 對軟硬件進行設計。
    發表于 03-13 14:31 ?355次閱讀
    水下航行器<b class='flag-5'>電機</b>的SiC <b class='flag-5'>MOSFET</b><b class='flag-5'>逆變器</b>設計
    主站蜘蛛池模板: 亚洲精品久久久午夜福利电影网| 亚洲欧洲无码AV在线观看你懂的| 亚洲精品久久一区二区三区四区| 高跟丝袜岳第一次| 啪啪漫画无遮挡全彩h同人| 最新老头恋老OLDMAN| 麻豆三级电影| 久久99re8热在线播放| 亚洲国产精品线在线观看| 国自产精品手机在线视频| 亚洲国产在线午夜视频无| 国产亚洲精品网站在线视频| 亚洲精品国产熟女久久久| 精品久久免费观看| 最新国产精品福利2020| 男男gaygay拳头| 纯肉高H放荡受BL文库| 无人视频在线观看免费播放影院| 国内精品久久人妻无码HD浪潮| 亚洲欧美日韩国产手机在线 | 国产精品第八页| 午夜亚洲WWW湿好大| 777米奇色狠狠俺去啦| 女警被黑人20厘米强交| 被老总按在办公桌吸奶头| 脱jk裙的美女露小内内无遮挡| 在线观看亚洲免费人成网址| 久久久免费观看| WINDOWSCHANNEL老太| 无码人妻少妇色欲AV一区二区| 含羞草免费完整视频在线观看| 中文字幕s级优女区| 日本另类z0zxhd| CHINA末成年VIDEO学生| 日本浴室日产在线系列 | 俺来也俺去也视频久久| 老司机午夜影院味味| yellow日本动漫观看免费| 我的家庭女教师| 久久伊人免费| 俄罗斯bbbbbbbbb大片|