聚合物基固態電解質得益于其易加工性,最有希望應用于下一代固態鋰金屬電池。目前,聚合物基態電解質的離子電導率提升策略多為加入導鋰陶瓷以構建離子傳輸通道,其提升程度有限。電場在鋰離子輸運過程中存在重要影響,目前研究中有關電場對鋰離子傳輸的影響機制尚不明確。
近日,清華大學深圳國際研究生院康飛宇教授、賀艷兵副教授和呂偉副教授等人在Science China Materials發表研究論文,將兼具高離子電導率和高介電常數的鈮酸鋰嵌入聚偏氟乙烯基體中,設計了一種新型復合固態電解質。
本文要點
1)鈮酸鋰顆粒有效調節電解質內部電場結構,增強了離子輸運方向電場強度,實現了離子電導率的大幅提升(7.39×10?4 S cm?1,25°C)。
2) 該電解質匹配高鎳正極和鋰金屬負極的固態電池可穩定循環1000次以上,容量保持率為72%。 該研究為設計下一代固態鋰電池用高離子電導復合固態電解質提供了新的策略。
Figure1.Working mechanisms of solid-state NCM811 /Li batteries using NPC and PVDF electrolytes during long cycles. (a) In the NCM811/PVDF/Li batteries, the local aggregation of electric field in PVDF hinders the Li+ uniform transport and promotes Li dendrite growth. (b) In the NCM811/NPC/Li batteries, the enhanced electric field in NPC along the Li-ion transport direction and uniform electric field at the interface with Li metal contribute to fast Li+ conduction and uniform Li platting/stripping.
Figure2.Morphology and physicochemical characterizations of PVDF and NPC electrolytes. Surface SEM image of (a) PVDF and (b) NPC-30 electrolytes. (c) Cross-sectional SEM images of NPC-30 electrolyte. (d) Arrhenius plots of ionic conductivities of PVDF and NPC-based electrolytes. (e) Real part (?r′) of relative permittivity at different frequencies for PVDF and NPC-30 polymer films. AFM morphology images of (f) PVDF and (g) NPC-30 and the corresponding interfacial potential images (h, i).
Figure3.Properties of Li-symmetric cells using PVDF and NPC-30 electrolytes. (a) CCD of the Li/PVDF/Li and Li/NPC-30/Li cells. Cycling curves of Li-symmetrical cells with PVDF and NPC-based electrolytes at current density of (b) 0.1?mA?cm?2, (c) 0.5?mA?cm?2 and (d) 1?mA?cm?2. SEM images of the Li metal surface after cycling at 0.1?mA?cm?2 for 100 h using (e) PVDF and (f) NPC electrolytes. Potential distribution of the cross-section for the interface between Li metal and (g) PVDF, (h) NPC-30 electrolyte from KPFM. (i) 3D ToF-SIMs visual maps of the distributions of LiF+, Li2CO3+ and Li2S+ species at the interface of Li metal after cycling for 100 h using PVDF and NPC-30.
Figure4.Properties of solid-state NCM811/Li solid-state batteries using PVDF and NPC-30 electrolytes. Long-term cycling performance of NCM811/Li cells using PVDF and NPC-30 electrolyte at (a) 0.5?C and (b) 1?C. (c) Rate capacities of NCM811/Li cells using PVDF and NPC-30 electrolyte. (d) Cycling performance of NCM811/Li cells with higher cathode loading of 4?mg?cm?2. Interfacial potential images of (e) NCM811/NPC-30 and (f) NCM/PVDF. Gauss statistic distribution histograms of interfacial potential for (g) NCM811/NPC-30 and (h) NCM811/PVDF. TEM and FFT images of cycled NCM811 cathode with (i) NPC-30 and (j) PVDF in full cells.
Figure5.Characterizations of the ion transport mechanism of PVDF and NPC-30 electrolytes. (a) DFT results for adsorption energies. (b) AFM image and (c) corresponding nano-IR overlap of C=O vibration of DMF at 1663?cm?1. (d) HAADF-TEM image of NPC-30 electrolyte and (e) corresponding EELS mapping of Li element and (f) EDS mapping of Nb element. (g) 6Li NMR spectra of pristine LiNbO3. (h) 6Li NMR spectra of rinsed LiNbO3 from NPC-30 after cycling in the 6Li/NPC-30/6Li cell.
審核編輯:劉清
-
固態電池
+關注
關注
10文章
718瀏覽量
28403 -
固態電解質
+關注
關注
0文章
86瀏覽量
5557 -
鋰金屬電池
+關注
關注
0文章
140瀏覽量
4500
原文標題:清華大學深研院康飛宇&賀艷兵&呂偉等:鈮酸鋰調控固態電解質電場結構促進鋰離子高效傳輸
文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
超聲波焊接有利于解決固態電池的枝晶問題
清華大學:自由空間對硫化物固態電解質表面及內部裂紋處鋰沉積行為的影響

研究論文::乙烯碳酸酯助力聚合物電解質升級,提升高電壓鋰金屬電池性能

清華深研院劉思捷/港科大Kristiaan Neyts最新AEM封面文章:硫化物復合固態電解質

Li3MX6全固態鋰離子電池固體電解質材料

半互穿網絡電解質用于高電壓鋰金屬電池

通過電荷分離型共價有機框架實現對鋰金屬電池固態電解質界面的精準調控

評論