哈密瓜是新疆的特色水果,目前,哈密瓜品種繁多,采收時,不同品種的成熟期不同,在成熟時的表現也不同,因此,簡單地通過外表來分辨哈密瓜的成熟度,會造成判別不一致,影響哈密瓜的貨架期,從而降低聲譽和經濟效益。因此,研究哈密瓜成熟度有重要意義。
堅實度是哈密瓜成熟度的重要參考指標之一。目前,堅實度檢測多采用M-T有損檢測方法,該方法費時、費力,而且會破壞樣品。因此,急需一種無損、快速、便捷的檢測方法,綜合分析哈密瓜成熟期的理化指標變化規律及其與堅實度的相關性。近年來,高光譜技術在獼猴桃、草莓、蘋果、梨、櫻桃、香蕉和西甜瓜等水果的成熟度、堅實度、糖度等品質無損檢測中得到應用,為哈密瓜成熟期的品質評價提供了無損檢測技術。
測定方法
哈密瓜測定項目包括光譜信息采集和理化指標(質量、橫縱徑、堅實度)測量。具體的方法如下:
(1)哈密瓜光譜信息的采集
(2)高光譜圖像數據采集前,先進行黑白校正,調整輸送裝置的速度。數據采集時,把哈密瓜樣本放到高光譜試驗臺上,線陣的探測器在光學焦面(哈密瓜前進方向)的垂直方向橫向掃描,掃出整個平面,獲取3個檢測部位的哈密瓜圖像信息,通過軟件對光譜信息采集和保存。
(3)哈密瓜理化指標的測量
縱橫徑的測量:哈密瓜的高度部位即縱徑,用高度游標卡尺測量。哈密瓜赤道部位即橫徑,用游標卡尺測量。
質量的測量:采用電子秤測量哈密瓜質量。
堅實度的測量:哈密瓜堅實度的測量采用手持式硬度計。
對已完成光譜信息采集的哈密瓜樣本的3個標記區域(陰面、陽面與果臍)削去果皮進行測量。
2、光譜的處理及模型評價指標
采集后的光譜數據采用ENVI4.7軟件進行圖像數據降維和預處理。利用TQAnalyst6.1軟件進行建模定量、定性分析。模型的穩健性和準確性評價指標有校正集相關系數(Rc),預測集相關系數(Rp)、校正均方根誤差(RMSEC)和預測均方根誤差(RMSEP)。通常情況下,模型中R值越大,RMSEC、RMSEP值越小,模型表現得越穩健,結果越準確。
3、結果與分析
哈密瓜樣本理化指標測定結果及分析
哈密瓜在成熟過程中,理化指標會隨著不同成熟期呈現出一定的變化規律。由表1可知,不同成熟期的哈密瓜理化指標存在一定的差異。從縱徑的平均值來看,同一成熟度的哈密瓜,金密16號要略大于金密17號;從橫徑的平均值來看,同一成熟度的金密16號要略小于金密17號;七成熟的哈密瓜平均質量均要小于九成熟的哈密瓜;從堅實度值來看,七成熟的哈密瓜平均堅實度均要大于九成熟的哈密瓜。
不同品種哈密瓜堅實度的分析
果實的堅實度直接影響果肉質地與脆性。哈密瓜堅實度是衡量內部品質的重要指標之一。從圖2可以看出,七成熟哈密瓜:金密16號的堅實度值在54.0~120.0N,金密17號的堅實度值在50.6~84.0N;九成熟哈密瓜:金密16號的堅實度值在51.0~79.9N,金密17號的堅實度值在48.0~61.2N。兩個品種的哈密瓜樣本點的堅實度分布規律如圖1所示,通過對比可以發現,金密16號的堅實度均大于金密17號,說明不同品種哈密瓜的堅實度存在明顯差異。
不同成熟期哈密瓜堅實度的分析
隨著哈密瓜生長發育的不斷推進,堅實度隨著成熟期的不同而發生變化。圖2所示兩個品種的哈密瓜不同
表1不同成熟期哈密瓜樣本的理化指標值
圖1不同品種哈密瓜樣本點的堅實度分布
圖2不同成熟期哈密瓜堅實度變化規律
成熟期堅實度變化規律,從中可以發現,同一品種哈密瓜,九成熟的堅實度要比七成熟低,成熟度越高,堅實度越低。研究表明,隨著哈密瓜不斷成熟,果實細胞壁果膠物質的降解和纖維素分離,導致細胞解體,果肉的硬度降低
不同原始光譜的分析
高光譜儀采集哈密瓜的光譜信息是由光源照射到哈密瓜表面后通過漫透射進行擴散傳輸的。圖4是2個品種哈密瓜不同成熟度的原始光譜曲線,從中可以發現,同一品種、不同成熟期的哈密瓜光譜曲線走向基本一致。不同品種的哈密瓜光譜曲線之間存在很大差異,金密16號哈密瓜光譜在400~750nm存在明顯變化的波峰、波谷。金密17號哈密瓜光譜在500~850nm存在較明顯變化的波峰、波谷,在850nm之后波形基本一致。說明不同品種的哈密瓜由于內部生物結構不同,光譜曲線差別也很大。
圖4哈密瓜原始光譜曲線
不同檢測部位堅實度的分析
哈密瓜果實的成長與發育先是縱徑發育,再橫向增重發育。根據哈密瓜的生長特點,對金密16號哈密瓜的3個檢測部位(赤道陽面、赤道陰面和果臍)的堅實度進行測量,其變化規律如圖5所示,從中可以發現,不同檢測部位的哈密瓜堅實度存在差異,赤道(陽面、陰面)部位的堅實度要高于果臍部位的堅實度;同一檢測部位相比,堅實度的變化沒有明顯規律。
圖5不同檢測部位堅實度值分布規律
水分是作物進行生命活動和生長代謝的重要物質,水分虧缺能直接影響作物的生理生化過程和形態結構,從而對其生長?產量和品質造成影響。同時,我國農業用水占全國用水總量已經達到70%,且水資源分布不均,每年因為干旱而使作物受災面積最高達到4000萬hm2,嚴重威脅我國的糧食安全。
因此,在水資源短缺的嚴峻形勢下,提高水資源的利用效率對指導作物生長發育,提高作物產量,節約水資源具有重要意義。利用傳統烘干法測量作物水分耗時費力,多光譜?近地非成像遙感光束分離的成像質量差,光譜重疊度高,易受環境等背景因素影響,難以滿足對作物水分的高效?精準實時監測。而高光譜遙感技術具有空間分辨率高,光譜信息豐富,波段窄而連續,時效性好的特點,近年來已被廣泛應用于作物水分含量監測領域。
作物水分的常見測試方法
作物水分的測試有直接法和間接法2種,其中直接法是通過物理或化學測試直接獲取作物水分含量的方法,而間接法通過測量作物或其相關指標屬性,以推斷或估計作物水分信息。
但常見的作物水分測量方法準確度不高,操作較為復雜,易受環境溫度等外界因素影響,具有一定的局限性,并且應用范圍窄,難以適應大面積的農業生產需要。隨著各項技術的深入研究,高光譜遙感技術以其超多波段?圖譜合一和光譜信息豐富的技術優勢,能夠實現作物水分含量準確?快速?無損地實時監測。
表1作物水分的常見測試方法
各方法的優缺點比較
直接法測量過程簡單,結果較為準確,但測量過程冗長繁瑣,增加了實驗難度和周期,同時容易破壞待測樣品,并產生對環境有害的化學試劑和藥品。間接法相較于直接測定法有所提升,測量速度快,易實現在線批量檢測,但容易受噪聲?物體形狀及大小?環境溫度等因素影響,難以適用大面積作物水分監測和指導農業生產。隨著各項技術的深入研究,為能夠更好地指導農業生產需要,高光譜成像技術作為一種發展較為成熟的遙感監測技術,以其準確?無損?快速的技術優點已廣泛應用于作物水分監測領域。
常見高光譜遙感分類
高光譜遙感按照作用空間尺度可劃分為衛星遙感?機載高光譜儀?地物光譜遙感以及手持式光譜儀等。基于CGMD便攜式光譜儀和地物高光譜探測器對冬小麥冠層生長指標對比研究發現,CGMD光譜儀操作簡單,便于攜帶,精度可靠,而地物高光譜探測器采集信息量大,結合先進預處理,特征提取和機器學習算法可以有效提高模型反演精度。
基于便攜式地物光譜儀結合手持式光譜探測器獲取冬小麥葉片反射率,并結合推掃式光譜儀波段寬,光譜分辨率高的特點獲得冠層反射率,但是受天氣條件或野外環境因素,如云層?大氣濕度?光線條件和地面高程差等都會影響數據采集和監測結果。
3、光譜遙感在典型作物水分監測的應用
雖然當前高光譜遙感技術應用于水分監測的作物類型已經有很多種,但是在監測作物水分指標和方法上面也會有所不同,這些水分指標包括植株含水量(PWC),葉片含水量(LWC),冠層含水量(CWC),葉片等效水厚度(LEWT)和相對含水量(RWC),而研究方法包括單波段光譜反射率法,光譜植被指數法,全波段光譜分析法和光譜輻射傳輸模型等。而水稻?小麥和玉米作為典型作物,在水分監測指標和研究方法方面更具全面性和系統性。已有許多學者對此作了細致而深入的研究,并取得了豐富的研究成果和技術創新,也為高光譜遙感技術監測其它作物水分含量提供技術參考。因此,下面對高光譜遙感作用于典型作物水稻,小麥,玉米的水分監測作詳細闡述。
3.1小麥
高光譜遙感通過敏感波段提取以及新型植被指數構建可以顯著提高光譜反射率與水分含量的相關性。目前用高光譜監測小麥水分的研究主要集中在濕潤和半濕潤地區,而干旱和半干旱區域的研究還相對較少。隨著高分辨率遙感儀器的發展以及新型植被指數出現,高光譜遙感技術在干旱和半干旱區域的應用潛力十分廣泛。同時,小麥在不同生長時期LWC的敏感波段存在差異,在開花期,小麥的LWC敏感波段主要集中在可見光和近紅外波段;而在孕穗期和乳熟期,則分布在近紅外和短波紅外波段。
表2 高光譜遙感估算小麥含水量的典型研究
3.2水稻
水稻的葉片水分敏感波段主要分布在近紅外和短波紅外波段,當前對水稻水分監測的研究主要集中在生長中后期以及濕潤和半濕潤地區。
水稻在不同生長時期的敏感波段主要分布在NIR(710~970nm)和SWIR(1450nm?1750nm和1830nm附近),并且未來應克服植被覆蓋度?氣象條件和資源限制等不利因素,更多關注作物在生長前期和干旱?半干旱地區的研究。水稻是一種生長環境受地形和氣候變化影響較大的作物,其生長階段受到葉片水分變化的影響非常顯著。研究發現,基于新的水分指數可以適應不同地域?氣候以及葉綠素?基因型變異等動態變化帶來的影響。
表3 高光譜遙感估算水稻含水量的典型研究
推薦:
便攜式高光譜成像系統 iSpecHyper-VS1000
專門用于公安刑偵、物證鑒定、醫學醫療、精準農業、礦物地質勘探等領域的最新產品,主要優勢具有體積小、幀率高、高光譜分辨率高、高像質等性價比特點采用了透射光柵內推掃原理高光譜成像,系統集成高性能數據采集與分析處理系統,高速USB3.0接口傳輸,全靶面高成像質量光學設計,物鏡接口為標準C-Mount,可根據用戶需求更換物鏡。
審核編輯 黃宇
-
光譜儀
+關注
關注
2文章
978瀏覽量
30884 -
無損檢測
+關注
關注
0文章
207瀏覽量
18557 -
高光譜
+關注
關注
0文章
343瀏覽量
9978
發布評論請先 登錄
相關推薦
評論