色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

MOSFET與IGBT的區別

jf_pJlTbmA9 ? 來源:半導體材料與工藝設備 ? 作者:半導體材料與工藝 ? 2023-11-27 15:36 ? 次閱讀
  • 由于MOSFET的結構,通常它可以做到電流很大,可以到上KA,但耐壓能力沒有IGBT強。
  • IGBT可以做很大功率,電流和電壓都可以,就是一點頻率不是太高,目前IGBT硬開關速度可以到100KHZ,那已經是不錯了。不過相對于MOSFET的工作頻率還是九牛一毛,MOSFET可以工作到幾百KHZ,上MHZ,以至幾十MHZ。
  • 就其應用:根據其特點MOSFET應用于開關電源,鎮流器,高頻感應加熱;高頻逆變焊機;通信電源等等高頻電源領域;IGBT集中應用于焊機,逆變器變頻器,電鍍電解電源,超音頻感應加熱等領域。

開關電源(SMPS) 的性能在很大程度上依賴于功率半導體器件的選擇,即開關管和整流器。

雖然沒有萬全的方案來解決選擇IGBT還是MOSFET的問題,但針對特定SMPS應用中的IGBT 和 MOSFET進行性能比較,確定關鍵參數的范圍還是能起到一定的參考作用。

本文將對一些參數進行探討,如硬開關和軟開關ZVS(零電壓轉換) 拓撲中的開關損耗,并對電路和器件特性相關的三個主要功率開關損耗—導通損耗、傳導損耗和關斷損耗進行描述。此外,還通過舉例說明二極管的恢復特性是決定MOSFET 或 IGBT導通開關損耗的主要因素,討論二極管恢復性能對于硬開關拓撲的影響。

導通損耗

除了IGBT的電壓下降時間較長外,IGBT和功率MOSFET的導通特性十分類似。由基本的IGBT等效電路(見圖1)可看出,完全調節PNP BJT集電極基極區的少數載流子所需的時間導致了導通電壓拖尾出現。

這種延遲引起了類飽和效應,使集電極/發射極電壓不能立即下降到其VCE(sat)值。這種效應也導致了在ZVS情況下,在負載電流從組合封裝的反向并聯二極管轉換到IGBT的集電極的瞬間,VCE電壓會上升。IGBT產品規格書中列出的Eon能耗是每一轉換周期Icollector與VCE乘積的時間積分,單位為焦耳,包含了與類飽和相關的其他損耗。其又分為兩個Eon能量參數,Eon1和Eon2。Eon1是沒有包括與硬開關二極管恢復損耗相關能耗的功率損耗;Eon2則包括了與二極管恢復相關的硬開關導通能耗,可通過恢復與IGBT組合封裝的二極管相同的二極管來測量,典型的Eon2測試電路如圖2所示。IGBT通過兩個脈沖進行開關轉換來測量Eon。第一個脈沖將增大電感電流以達致所需的測試電流,然后第二個脈沖會測量測試電流在二極管上恢復的Eon損耗。

在硬開關導通的情況下,柵極驅動電壓和阻抗以及整流二極管的恢復特性決定了Eon開關損耗。對于像傳統CCM升壓PFC電路來說,升壓二極管恢復特性在Eon (導通) 能耗的控制中極為重要。除了選擇具有最小Trr和QRR的升壓二極管之外,確保該二極管擁有軟恢復特性也非常重要。軟化度,即tb/ta比率,對開關器件產生的電氣噪聲和電壓尖脈沖有相當的影響。某些高速二極管在時間tb內,從IRM(REC)開始的電流下降速率(di/dt)很高,故會在電路寄生電感中產生高電壓尖脈沖。這些電壓尖脈沖會引起電磁干擾(EMI),并可能在二極管上導致過高的反向電壓。

在硬開關電路中,如全橋和半橋拓撲中,與IGBT組合封裝的是快恢復管或MOSFET體二極管,當對應的開關管導通時二極管有電流經過,因而二極管的恢復特性決定了Eon損耗。所以,選擇具有快速體二極管恢復特性的MOSFET十分重要。不幸的是,MOSFET的寄生二極管或體二極管的恢復特性比業界目前使用的分立二極管要緩慢。因此,對于硬開關MOSFET應用而言,體二極管常常是決定SMPS工作頻率的限制因素。

一般來說,IGBT組合封裝二極管的選擇要與其應用匹配,具有較低正向傳導損耗的較慢型超快二極管與較慢的低VCE(sat)電機驅動IGBT組合封裝在一起。相反地,軟恢復超快二極管,可與高頻SMPS2開關模式IGBT組合封裝在一起。

除了選擇正確的二極管外,設計人員還能夠通過調節柵極驅動導通源阻抗來控制Eon損耗。降低驅動源阻抗將提高IGBT或MOSFET的導通di/dt及減小Eon損耗。Eon損耗和EMI需要折中,因為較高的di/dt會導致電壓尖脈沖、輻射和傳導EMI增加。為選擇正確的柵極驅動阻抗以滿足導通di/dt 的需求,可能需要進行電路內部測試與驗證,然后根據MOSFET轉換曲線可以確定大概的值 (見圖3)。

假定在導通時,FET電流上升到10A,根據圖3中25℃的那條曲線,為了達到10A的值,柵極電壓必須從5.2V轉換到6.7V,平均GFS為10A/(6.7V-5.2V)=6.7mΩ。

公式1 獲得所需導通di/dt的柵極驅動阻抗

把平均GFS值運用到公式1中,得到柵極驅動電壓Vdrive=10V,所需的 di/dt=600A/μs,FCP11N60典型值VGS(avg)=6V,Ciss=1200pF;于是可以計算出導通柵極驅動阻抗為37Ω。由于在圖3的曲線中瞬態GFS值是一條斜線,會在Eon期間出現變化,意味著di/dt也會變化。呈指數衰減的柵極驅動電流Vdrive和下降的Ciss作為VGS的函數也進入了該公式,表現具有令人驚訝的線性電流上升的總體效應。

同樣的,IGBT也可以進行類似的柵極驅動導通阻抗計算,VGE(avg) 和GFS可以通過IGBT的轉換特性曲線來確定,并應用VGE(avg)下的CIES值代替Ciss。計算所得的IGBT導通柵極驅動阻抗為100Ω,該值比前面的37Ω高,表明IGBT GFS較高,而CIES較低。這里的關鍵之處在于,為了從MOSFET轉換到IGBT,必須對柵極驅動電路進行調節。

傳導損耗需謹慎

在比較額定值為600V的器件時,IGBT的傳導損耗一般比相同芯片大小的600 V MOSFET少。這種比較應該是在集電極和漏極電流密度可明顯感測,并在指明最差情況下的工作結溫下進行的。例如,FGP20N6S2 SMPS2 IGBT 和 FCP11N60 SuperFET均具有1℃/W的RθJC值。圖4顯示了在125℃的結溫下傳導損耗與直流電流的關系,圖中曲線表明在直流電流大于2.92A后,MOSFET的傳導損耗更大。


不過,圖4中的直流傳導損耗比較不適用于大部分應用。同時,圖5中顯示了傳導損耗在CCM (連續電流模式)、升壓PFC電路,125℃的結溫以及85V的交流輸入電壓Vac和400 Vdc直流輸出電壓的工作模式下的比較曲線。圖中,MOSFET-IGBT的曲線相交點為2.65A RMS。對PFC電路而言,當交流輸入電流大于2.65A RMS時,MOSFET具有較大的傳導損耗。2.65A PFC交流輸入電流等于MOSFET中由公式2計算所得的2.29A RMS。MOSFET傳導損耗、I2R,利用公式2定義的電流和MOSFET 125℃的RDS(on)可以計算得出。把RDS(on)隨漏極電流變化的因素考慮在內,該傳導損耗還可以進一步精確化,這種關系如圖6所示。

一篇名為“如何將功率MOSFET的RDS(on)對漏極電流瞬態值的依賴性包含到高頻三相PWM逆變器的傳導損耗計算中”的IEEE文章描述了如何確定漏極電流對傳導損耗的影響。作為ID之函數,RDS(on)變化對大多數SMPS拓撲的影響很小。例如,在PFC電路中,當FCP11N60 MOSFET的峰值電流ID為11A——兩倍于5.5A (規格書中RDS(on) 的測試條件) 時,RDS(on)的有效值和傳導損耗會增加5%。

在MOSFET傳導極小占空比的高脈沖電流拓撲結構中,應該考慮圖6所示的特性。如果FCP11N60 MOSFET工作在一個電路中,其漏極電流為占空比7.5%的20A脈沖 (即5.5A RMS),則有效的RDS(on)將比5.5A(規格書中的測試電流)時的0.32歐姆大25%。

公式2 CCM PFC電路中的RMS電流

式2中,Iacrms是PFC電路RMS輸入電流;Vac是PFC電路RMS輸入電壓;Vout是直流輸出電壓。

在實際應用中,計算IGBT在類似PFC電路中的傳導損耗將更加復雜,因為每個開關周期都在不同的IC上進行。IGBT的VCE(sat)不能由一個阻抗表示,比較簡單直接的方法是將其表示為阻抗RFCE串聯一個固定VFCE電壓,VCE(ICE)=ICE×RFCE+VFCE。于是,傳導損耗便可以計算為平均集電極電流與VFCE的乘積,加上RMS集電極電流的平方,再乘以阻抗RFCE。

圖5中的示例僅考慮了CCM PFC電路的傳導損耗,即假定設計目標在維持最差情況下的傳導損耗小于15W。以FCP11N60 MOSFET為例,該電路被限制在5.8A,而FGP20N6S2 IGBT可以在9.8A的交流輸入電流下工作。它可以傳導超過MOSFET 70% 的功率。

雖然IGBT的傳導損耗較小,但大多數600V IGBT都是PT (穿透) 型器件。PT器件具有NTC (負溫度系數)特性,不能并聯分流。或許,這些器件可以通過匹配器件VCE(sat)、VGE(TH) (柵射閾值電壓) 及機械封裝以有限的成效進行并聯,以使得IGBT芯片們的溫度可以保持一致的變化。相反地,MOSFET具有PTC (正溫度系數),可以提供良好的電流分流。

關斷損耗 —問題尚未結束

在硬開關、鉗位感性電路中,MOSFET的關斷損耗比IGBT低得多,原因在于IGBT 的拖尾電流,這與清除圖1中PNP BJT的少數載流子有關。圖7顯示了集電極電流ICE和結溫Tj的函數Eoff,其曲線在大多數IGBT數據表中都有提供。這些曲線基于鉗位感性電路且測試電壓相同,并包含拖尾電流能量損耗。

圖2顯示了用于測量IGBT Eoff的典型測試電路, 它的測試電壓,即圖2中的VDD,因不同制造商及個別器件的BVCES而異。在比較器件時應考慮這測試條件中的VDD,因為在較低的VDD鉗位電壓下進行測試和工作將導致Eoff能耗降低。

降低柵極驅動關斷阻抗對減小IGBT Eoff損耗影響極微。如圖1所示,當等效的多數載流子MOSFET關斷時,在IGBT少數載流子BJT中仍存在存儲時間延遲td(off)I。不過,降低Eoff驅動阻抗將會減少米勒電容CRES和關斷VCE的dv/dt造成的電流注到柵極驅動回路中的風險,避免使器件重新偏置為傳導狀態,從而導致多個產生Eoff的開關動作。

ZVS和ZCS拓撲在降低MOSFET和IGBT的關斷損耗方面很有優勢。不過ZVS的工作優點在IGBT中沒有那么大,因為當集電極電壓上升到允許多余存儲電荷進行耗散的電勢值時,會引發拖尾沖擊電流Eoff。ZCS拓撲可以提升最大的IGBT Eoff性能。正確的柵極驅動順序可使IGBT柵極信號在第二個集電極電流過零點以前不被清除,從而顯著降低IGBT ZCS Eoff 。

MOSFET的Eoff能耗是其米勒電容Crss、柵極驅動速度、柵極驅動關斷源阻抗及源極功率電路路徑中寄生電感的函數。該電路寄生電感Lx (如圖8所示) 產生一個電勢,通過限制電流速度下降而增加關斷損耗。在關斷時,電流下降速度di/dt由Lx和VGS(th)決定。如果Lx=5nH,VGS(th)=4V,則最大電流下降速度為VGS(th)/Lx=800A/μs。

總結

在選用功率開關器件時,并沒有萬全的解決方案,電路拓撲、工作頻率、環境溫度和物理尺寸,所有這些約束都會在做出最佳選擇時起著作用。

在具有最小Eon損耗的ZVS 和 ZCS應用中,MOSFET由于具有較快的開關速度和較少的關斷損耗,因此能夠在較高頻率下工作。

對硬開關應用而言,MOSFET寄生二極管的恢復特性可能是個缺點。相反,由于IGBT組合封裝內的二極管與特定應用匹配,極佳的軟恢復二極管可與更高速的SMPS器件相配合。

后語

MOSFE和IGBT是沒有本質區別的,人們常問的“是MOSFET好還是IGBT好”這個問題本身就是錯誤的。至于我們為何有時用MOSFET,有時又不用MOSFET而采用IGBT,不能簡單的用好和壞來區分,來判定,需要用辯證的方法來考慮這個問題。

本文轉載自:半導體材料與工藝設備

  • 審核編輯 黃宇
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    147

    文章

    7234

    瀏覽量

    213955
  • IGBT
    +關注

    關注

    1268

    文章

    3830

    瀏覽量

    249683
收藏 人收藏

    評論

    相關推薦

    耐高溫絕緣陶瓷涂層IGBT/MOSFET應用 | 全球領先技術工藝材料

    IGBT(絕緣柵雙極型晶體管)和MOSFET(金屬-氧化物半導體場效應晶體管)都是重要的半導體功率器件,它們在電子電路中發揮著關鍵作用。以下是IGBTMOSFET的特性及用途的介紹:
    的頭像 發表于 01-23 08:20 ?53次閱讀
    耐高溫絕緣陶瓷涂層<b class='flag-5'>IGBT</b>/<b class='flag-5'>MOSFET</b>應用 | 全球領先技術工藝材料

    Si IGBT和SiC MOSFET混合器件特性解析

    大電流 Si IGBT 和小電流 SiC MOSFET 兩者并聯形成的混合器件實現了功率器件性能和成本的折衷。 但是SIC MOS和Si IGBT的器件特性很大不同。為了盡可能在不同工況下分別利用
    的頭像 發表于 01-21 11:03 ?434次閱讀
    Si <b class='flag-5'>IGBT</b>和SiC <b class='flag-5'>MOSFET</b>混合器件特性解析

    廣東佳訊邀您一起探究:SiC MOSFET 替代 IGBT ,這是必然走向嗎?

    碳化硅MOSFET以其高開關速度、高溫工作能力和低導通電阻等優勢,在電動汽車、太陽能逆變器等領域替代IGBT。盡管IGBT在成本和成熟度上仍有優勢,但碳化硅MOSFET有望成為下一代主
    的頭像 發表于 01-15 17:40 ?154次閱讀
    廣東佳訊邀您一起探究:SiC <b class='flag-5'>MOSFET</b> 替代 <b class='flag-5'>IGBT</b> ,這是必然走向嗎?

    其利天下技術·mos管和IGBT有什么區別

    半導體器件,雖然它們都能進行開關操作,但在結構、工作原理和適用場合上有顯著區別。工作原理和結構差異MOS管(MOSFET)主要是電壓控制型器件,通過電場控制載流子
    的頭像 發表于 01-15 17:06 ?576次閱讀
    其利天下技術·mos管和<b class='flag-5'>IGBT</b>有什么<b class='flag-5'>區別</b>

    IGBT輸出是交流還是直流

    (DC),這取決于它在電路中的應用和連接方式。 IGBT的工作原理 IGBT結合了MOSFET(金屬氧化物半導體場效應晶體管)的高輸入阻抗和BJT(雙極型晶體管)的低導通壓降的優點。它的結構包括一個
    的頭像 發表于 09-19 14:56 ?1025次閱讀

    PIM模塊是什么意思?和IGBT有什么區別

    PIM模塊和IGBT在電力電子領域中都扮演著重要角色,但它們在定義、結構、功能和應用等方面存在顯著差異。以下是對PIM模塊的定義、與IGBT區別以及兩者相關內容的詳細探討。
    的頭像 發表于 08-08 09:40 ?3492次閱讀

    igbt模塊與mos的區別有哪些

    的導電特性。它們的主要區別在于控制電流的方式。 IGBT的工作原理是基于雙極型晶體管(BJT)和MOSFET的組合。IGBT具有一個柵極、一個集電極和一個發射極。柵極通過施加電壓來控制
    的頭像 發表于 08-07 17:16 ?703次閱讀

    igbt模塊和igbt驅動有什么區別

    IGBT(Insulated Gate Bipolar Transistor)模塊和IGBT驅動是電力電子領域中非常重要的兩個組成部分。它們在許多應用中發揮著關鍵作用,如電機驅動、電源轉換、太陽能
    的頭像 發表于 07-25 09:15 ?1185次閱讀

    Littelfuse宣布推出IX4352NE低側SiC MOSFETIGBT柵極驅動器

    Littelfuse宣布推出IX4352NE低側SiC MOSFETIGBT柵極驅動器。這款創新的驅動器專門設計用于驅動工業應用中的碳化硅(SiC)MOSFET和高功率絕緣柵雙極晶體管(IG
    的頭像 發表于 05-23 11:26 ?842次閱讀

    IGBT與MOS管的區別

    在電力電子領域,IGBT(絕緣柵雙極型晶體管)和MOS管(金屬氧化物半導體場效應晶體管)是兩種非常重要的功率半導體器件。它們各自具有獨特的工作原理、結構特點和應用場景。本文將對IGBT和MOS管進行詳細的分析和比較,以便讀者能夠更深入地理解它們之間的
    的頭像 發表于 05-12 17:11 ?2985次閱讀

    MOS管和IGBT管到底有什么區別

    IGBT是通過在MOSFET的漏極上追加層而構成的。 IGBT的理想等效電路如下圖所示,IGBT實際就是MOSFET和晶體管三極管的組合
    發表于 03-13 11:46 ?658次閱讀
    MOS管和<b class='flag-5'>IGBT</b>管到底有什么<b class='flag-5'>區別</b>

    IGBT內部結構過熱和過流的區別

    IGBT在結構上類似于MOSFET,其不同點在于IGBT是在N溝道功率MOSFET的N+基板(漏極)上增加了一個 P+基板(IGBT 的集電
    的頭像 發表于 02-19 15:01 ?2.9w次閱讀
    <b class='flag-5'>IGBT</b>內部結構過熱和過流的<b class='flag-5'>區別</b>

    MOSFETIGBT區別及高導熱絕緣氮化硼材料在MOSFET的應用

    決定充電效率和能量轉化的關鍵元件是IGBTMOSFET。在各類半導體功率器件中,未來增長最強勁的產品將是MOSFETIGBT模塊。MOSFET
    的頭像 發表于 02-19 12:28 ?1120次閱讀
    <b class='flag-5'>MOSFET</b>和<b class='flag-5'>IGBT</b><b class='flag-5'>區別</b>及高導熱絕緣氮化硼材料在<b class='flag-5'>MOSFET</b>的應用

    IGBTMOSFET在對飽和區的定義差別

    它們對飽和區的定義有一些差別。 首先,讓我們從基本原理開始理解飽和區。在晶體管中,飽和區是電流最大的區域,通常被用來實現開關操作。晶體管在飽和區工作時,處于最低的電壓狀態,導通電流較大。然而,飽和區的定義在IGBTMOSFET之間有所
    的頭像 發表于 02-18 14:35 ?2397次閱讀

    IGBT過流和短路故障的區別

    IGBT過流和短路故障的區別? IGBT是絕緣柵雙極型晶體管的縮寫,是一種半導體功率開關器件。在工業和電力領域廣泛應用,常常用于高壓、高電流的開關電源和逆變器中。然而,由于各種原因,IGBT
    的頭像 發表于 02-18 11:05 ?2064次閱讀
    主站蜘蛛池模板: 一一本之道高清手机在线观看 | 国产老肥熟xxxx | 9国产露脸精品国产麻豆 | 亚州性夜夜射在线观看 | 日韩精品熟女一区二区三区中文 | 公和熄洗澡三级中文字幕 | 337p欧洲亚大胆精品 | 二次元美女扒开内裤喷水 | 国产精品久久婷婷五月色 | 欧美精品3atv一区二区三区 | 美美哒免费影视8 | 四虎亚洲中文字幕永久在线 | 久久亚洲精品成人综合 | 偷偷鲁青春草原视频分类 | 小SAO货水真多把你CAO烂 | jizzjizz3d动漫| 久久精品热在线观看85 | 暖暖 免费 高清 日本视频5 | 女的把腿张开男的往里面插 | 在线播放免费人成视频 | 久久久久久久网 | 91免费网站在线看入口黄 | 国产精品v片在线观看不卡 国产精品v欧美精品v日韩 | 国产精品自在在线午夜蜜芽tv在线 | 丝瓜视频在线免费 | 欧美双拳极限扩张 | 综合久久久久久久综合网 | 亚洲成年人在线观看 | 亚洲精品AV一二三区无码 | 最美女人体内射精一区二区 | 伊人久久国产 | 久久成人a毛片免费观看网站 | 欧美亚洲国产免费高清视频 | 肉肉描写很细致的黄文 | 国产九九熟女在线视频 | 久久综合给会久久狠狠狠 | 日本一二三区在线视频 | 最近更新2019中文字幕国语 | 久久免费看少妇高潮A片JA | 国内精品久久 | 亚洲午夜精品AV无码少妇 |