1軌道交通的能耗特點
從對已經投入運營的地鐵線路能耗數據分析,可以看出地鐵系統運營的基本能耗特點。在考慮當地地區客 觀氣候特點和公共交通需求響應的基礎上,軌道交通能耗的時間分布與大眾出行的時間基本一致。軌交環控系統的設計均考慮了當地天氣、站點客流、運行負荷等因素在內,并在設計時留有余量。由于站內外的溫差較大導致冷凍水泵、冷卻水泵、冷水機組、風機、空調等環控系統設備長期滿負荷運行,往往造成了大量能源的消耗。總體而言,地鐵能耗主要表現為各系統能耗占比差距明顯,并且時間及區域分布不均衡。
上海地鐵自始至終都以構建由“管理保障、專項規劃、規程規范、專項技術”四大體系組成的節能減排工作體系為基礎,率先提出“打造綠色地鐵”目標。上海地鐵標準站的機電系統包括給排水、環控通風、及動力照明設備等,其中作為主要用能的環控系統構成包括:車站公共區空調、通風(兼排煙)系統(簡稱大系統);車站區間排熱(兼排煙)系統(簡稱排熱系統);區間隧道活塞通風、機械通風(兼排煙)系統(簡稱隧道通風系統);車站設備及管理用房空調、通風(兼排煙)系統(簡稱小系統);空調冷凍水系統(簡稱水系統)。通風空調系統制式統一采用全封閉站臺門系統,且按站臺門一步到位設計。大小系統合用車站設置的集中冷源,均采用水冷螺桿式冷水機組。冷凍水系統采用變頻變水量閉式循環系統,并由分水器分別供給公共區域組合式空調機組和管理用房空氣處理機組。系統末端設備設有具備動態壓力平衡能力的電動兩通調節閥,可根據負荷變化調節冷凍水量及冷凍水供回干管或集水器和分水器間設置的電動壓差式旁通閥。
為實現新型標準車站建筑對比其他同類型車站綜合節能率為 15% 以上的目標,在對先行示范車站的實踐分析的基礎上,規范系統設計節能措施主要針對于系統設備選型以及自動控制應用方面。站臺設定采用的風水聯調聯動空調系統,有效地降低車站空調運行能耗。同時全線配以 LED 照明和智能燈光控制系統,減少光污染之余更在降低能耗方面取得明顯成效。
比較城市其他交通運行方式而言,地鐵車站有低能耗方面的表;但其建筑和系統規模都十分龐大,從而導致地鐵車站的能耗在整體城市能耗中比重較大。地鐵車站的運營用電可達到可變成本的 30% 以上之多,因此需要實施針對性的有效控制措施降低能耗以提升運營效益。
對于夏熱冬冷地區屏蔽門車站,公共區域與設備房負荷差異性較大,因而多采用兩套系統單獨設計的方案。根據設備房區域大小及機組熱量計算即可確定機組的冷量,而且相比較大系統運行負荷,小系統較為穩定。地鐵車站公共區域的冷負荷的考慮則主要包括:設備和照明的產熱、人員散熱、滲透能耗和圍護結構傳熱等。
本文應用 eQuest 能耗模擬軟件,模擬分析上海 18號線一期標準車站的全年能耗表現,見圖 3。通過分設系統,綜合分析確定影響車站通風空調能耗的主要因素。此外,采用逐項類比的方法來確定單項節能措施的應用成效。
不同車站能耗模擬結果中都顯示在夏季制冷階段,系統冷機運行能耗與水泵能耗均呈現先升后降的規律,在 7、8 月達到峰值。雖然屏蔽門系統有效降低了空氣處理機組的運行能耗,但由于與隧道區間的空氣分隔,明顯增加了排風機組的能耗。與傳統系統相比在冬季和過度季節的新風能耗比重也有所增加。
由于e-Quest模擬軟件并不支持建筑雙系統的模擬,故而采用在不同時間段分別建模進而相加的近似法對一期各車站建筑進行模擬分析的方法。軟件模擬結果相互驗證了在車站能耗中,照明與風機的能耗權重占比較高,接近平均 30%;其次為設備用能和制冷能耗,分別約占20% 左右。
從數據分析上來看,模擬計算峰值負荷數值與設計計算值接近,軟件模擬值與實測數值的誤差通常在 10%以內。因此,完全可以將模擬計算分析結果應用于實際節能優化措施的決策。
2地鐵車站節能措施
鑒于車站環控系統的組成及能耗因素的影響,總結其他建筑節能優化及措施應用效益的經驗基礎上,針對性地對不同系統采取相應有效的節能措施,其節能效益還是十分顯著的。
首先在照明系統方面,減少不必要的照明(例如在保證安全的前提下,亞光材料的反光涂料可以減少長條燈帶的設置),選用 LED 節能性燈具。同時配合自動感應控制,單獨照明系統的節能表現對比基本節能要求可達到 50% 以上,平均節能率超過 30%。所以根據實際使用情況,制定合理的相關照明指標要求,大力采用節能燈具結合布局改善既是對地鐵照明系統節能有效的策略。
由于站臺建筑的特殊性,在考慮設計規范要求衡上 , 空調系統送風溫差的設定應相對略微提高,這樣既避免系統結露情況的出現,在實際使用期間滿意調研上也得到較為滿意的結果。合理適度地提高送風溫差,盡可能地降低送風量,降低系統能耗的上限值是從根本上提高能效的手段。站臺通風空調系統的設計是考慮滿足運行期間客流量條件下的需求,但實際運營過程中客流量往往不會達到設計值狀態,所以對大系統采用變頻裝置及時按需調節風量是有效的節能手段。數據分析顯示通過變頻控制,可以使風機風量平均減少 30%,其功率耗能減少 45%。
在采用有效空調設備的同時,實行風水聯調的控制手段也是降低空調能耗重要策略。車站通風空調系統形式復雜,一者是設備較多,再者設備之間相互關聯交叉,系統獨立控制難以實現設計預期。
基于系統效率原則、考慮負荷對冷量的需求變化,全局化動態協調模式的風水系統聯動控制很好地保證不同情況下通風系統穩定的運行表現。先行試驗車站的實際研究表明,風水變頻控制的引用使空調季節車站通風系統的節能率提升 30% 以上,大幅降低了車站運營的整體能耗及運營成本。
此外,節能電梯和高性能電氣設備的高比例應用在車站長時間運營的過程中也有相當的節能貢獻。
(1)概述
Acrel-EIoT能源物聯網開放平臺是一套基于物聯網數據中臺,建立統一的上下行數據標準,為互聯網用戶提供能源物聯網數據服務的平臺。用戶僅需購買安科瑞物聯網傳感器,選配網關,自行安裝后掃碼即可使用手機和電腦得到所需的行業數據服務。
該平臺提供數據駕駛艙、電氣安全監測、電能質量分析、用電管理、預付費管理、充電樁管理、智能照明管理、異常事件報警和記錄、運維管理等功能,并支持多平臺、多語言、多終端數據訪問。
(2)應用場所
本平臺適用于公寓出租戶、連鎖小超市、小型工廠、樓管系統集成商、小型物業、智慧城市、變配電站、建筑樓宇、通信基站、工業能耗、智能燈塔、電力運維等領域。
(3)平臺結構
(4)平臺功能
◆電力集抄
電力集抄模塊可以實現對各種監測數據的查詢、分析、預警及綜合展示,以保證配電室的環境友好。在智能化方面實現供配電監控系統的遙測'、遙信、遙控控制,對系統進行綜合檢測和統一管理;在數據資源管理方面,可以顯示或查詢供配電室內各設備運行(包括歷史和實時參數,并根據實際情況進行日報、月報和年報查詢或打印,提高工作效率,節約人力資源。
變壓器監控
配電圖
◆能耗分析
能耗分析模塊采用自動化、信息化技術,實現從能源數據采集、過程監控、能源介質消耗分析、能耗管理等全過程的自動化、科學化管理,使能源管理、能源生產以及使用的全過程有機結合起來,運用先進的數據處理與分析技術,進行離線生產分析與管理,實現全廠能源系統的統一調度,優化能源介質平衡、有效利用能源,提高能源質量、降低能源消耗,達到節能降耗和提升整體能源管理水平的目的。
參考文獻
[1] 姚堯.軌道交通建筑能耗分析及節能措施
[2] 穆廣友、李曉龍、尹黎明,黃海界,地鐵車站照明系統能耗分析及節能對策, U231.91.
[3] 曾逸婷、趙蕾,地鐵車站環境熱與通風空調系統節能策略研究進展 .
[4] 王曉保、楊欣、袁立新,地鐵車站空調實施風水聯動控制技術節能效果分析 .
[5] 企業微電網設計與應用手冊2022.05版.
審核編輯 黃宇
-
監控
+關注
關注
6文章
2217瀏覽量
55259 -
物聯網
+關注
關注
2910文章
44752瀏覽量
374593 -
能源
+關注
關注
3文章
1688瀏覽量
43547
發布評論請先 登錄
相關推薦
評論