來自斯圖加特大學(德國)的 Harald Gie?en 教授的團隊正在致力于將光子學和納米技術用于新的應用和設備。研究人員正在研究通過控制等離子體效應來創建顯示器的技術。等離激元學研究光與金屬納米結構的相互作用,金屬納米結構可以設計成對特定波長的光表現出強烈的反應。對于動態、可變的顯示器,必須通過向設備施加電壓來理想地控制這些共振波長的位置。來自德國的研究人員正在創建基于銅薄膜的設備,其中蝕刻有納米結構,浸入電解質溶液中。當施加電壓時,銅發生電化學變化(氧化或還原),從而改變從設備反射的光的顏色。
光譜反射率測量的設置是使用Isoplane / PIXIS光譜系統實現的。Gie?ens 教授公司 NT&C 使用Isoplane和SpectraPro HRS系統構建了用于敏感明場和暗場光譜的顯微光譜設備。
審核編輯 黃宇
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。
舉報投訴
-
顯示器
+關注
關注
21文章
5009瀏覽量
140273 -
等離子體
+關注
關注
0文章
126瀏覽量
14251
發布評論請先 登錄
相關推薦
等離子體的一些基礎知識
等離子體(Plasma)是一種電離氣體,通過向氣體提供足夠的能量,使電子從原子或分子中掙脫束縛、釋放出來,成為自由電子而獲得,通常含有自由和隨機移動的帶電粒子(如電子、離子)和未電離的中性粒子。由于
OptiFDTD應用:納米盤型諧振腔等離子體波導濾波器
)等離子波導相比,金屬-絕緣體-金屬(MIM)波導具有很強的光約束,對SPPs來說,其傳播距離可接受。
?有許多種類的納米波導濾波器:齒形等離子體波導[2],盤型諧振腔Channel
發表于 01-09 08:52
等離子的基本屬性_等離子體如何發生
射頻等離子體(RF等離子體)是在氣流中通過外部施加的射頻場形成的。當氣體中的原子被電離時(即電子在高能條件下與原子核分離時),就會產生等離子體。這種電離過程可以通過各種方法實現,包括熱、電和電磁
等離子體發射器的工作原理
在探索宇宙的征途中,人類一直在尋找更高效、更環保的推進技術。 等離子體基礎 等離子體,被稱為物質的第四態,是一種由離子、電子和中性粒子組成的高溫、高電導率的氣體。在自然界中,等離子體存
等離子體技術在航天中的作用
一、等離子體推進技術 等離子體推進技術是利用等離子體的高速運動來產生推力的一種航天推進方式。與傳統化學推進相比,等離子體推進具有更高的比沖,這意味著在消耗相同質量的推進劑時,
等離子體電導率的影響因素
等離子體,作為物質的第四態,廣泛存在于自然界和工業應用中。從太陽風到熒光燈,等離子體的身影無處不在。等離子體的電導率是衡量其導電性能的關鍵參數,它決定了等離子體在電磁場中的行為。 1.
等離子體的定義和特征
等離子體的定義 等離子體是一種由離子、電子和中性粒子組成的電離氣體。在這種狀態下,物質的部分或全部原子被電離,即原子核與電子分離,形成了帶正電的離子和自由移動的電子。這種電離狀態使得
等離子體在醫療領域的應用
等離子體,作為物質的第四態,不僅在物理學和工程學領域有著廣泛的應用,而且在醫療領域也展現出了巨大的潛力。等離子體技術以其獨特的物理和化學特性,為疾病治療和生物醫學研究提供了新的工具和方法。 1.
等離子體清洗的原理與方法
等離子體清洗的原理 等離子體是物質的第四態,由離子、電子、自由基和中性粒子組成。等離子體清洗的原理主要基于以下幾點: 高活性粒子 :等離子體
為什么干法刻蝕又叫低溫等離子體刻蝕
本文介紹了為什么干法刻蝕又叫低溫等離子體刻蝕。 什么是低溫等離子體刻蝕,除了低溫難道還有高溫嗎?等離子體的溫度?? ? 等離子體是物質的第四態,并不是只有半導體制造或工業領域中才會有
什么是電感耦合等離子體,電感耦合等離子體的發明歷史
電感耦合等離子體(Inductively Coupled Plasma, ICP)是一種常用的等離子體源,廣泛應用于質譜分析、光譜分析、表面處理等領域。ICP等離子體通過感應耦合方式將射頻能量傳遞給氣體,激發成
電感耦合等離子體的基本原理及特性
在電感耦合等離子體系統中,射頻電源常操作在13.56 MHz,這一頻率能夠有效地激發氣體分子產生高頻振蕩,形成大量的正離子、電子和中性粒子。通過適當調節氣體流量、壓力和射頻功率,可以實現等離子體的高溫、高密度和高均勻性。因此,I
通過結合發射和吸收光譜法比較激光等離子體的激發溫度
激光等離子體是一種在許多科學和工業領域廣泛應用的重要現象。理解和測量其激發溫度對于材料科學、物理學和工程學都有著至關重要的意義。近期,一篇題為《Comparison of excitation
利用氨等離子體預處理進行無縫間隙fll工藝的生長抑制
理想的負斜率,沉積過程應能夠實現“自下而上的生長”行為。在本研究中,利用等離子體處理的生長抑制過程,研究了二氧化硅等離子體增強原子層沉積(PE-ALD)過程在溝槽結構中自下而上的生長。采用n2和氨
評論