色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

大算力芯片龍頭股

中科院半導(dǎo)體所 ? 來(lái)源:軟硬件融合 ? 2023-07-26 18:19 ? 次閱讀

1 關(guān)于計(jì)算架構(gòu)階段的劃分

ae9ef686-2b9c-11ee-a368-dac502259ad0.png

圖靈獎(jiǎng)獲得者John Hennessy總結(jié)了計(jì)算機(jī)體系結(jié)構(gòu)的四個(gè)時(shí)代和即將興起的第五個(gè)時(shí)代:

第一代,晶體管時(shí)代,指令集架構(gòu)出現(xiàn)之前,計(jì)算機(jī)架構(gòu)各不相同;

第二代,小規(guī)模和中等規(guī)模集成電路時(shí)代,出現(xiàn)支持指令集架構(gòu)的CPU處理器;

第三代,大規(guī)模和超大規(guī)模集成電路時(shí)代,指令級(jí)并行以及CISC和RISC混戰(zhàn);

第四代,超大規(guī)模集成電路的多核處理器并行時(shí)代;

第五代,從2016年超大規(guī)模的領(lǐng)域?qū)S锰幚砥鳎―SA)時(shí)代。

aeddfc78-2b9c-11ee-a368-dac502259ad0.png

上面計(jì)算機(jī)體系結(jié)構(gòu)的時(shí)代劃分,是站在單處理器引擎視角進(jìn)行的。我們參考上述五個(gè)時(shí)代的劃分,并且站在多處理器引擎計(jì)算架構(gòu)從簡(jiǎn)單到復(fù)雜的發(fā)展視角,重新進(jìn)行了如下的發(fā)展階段劃分:

第一階段,單CPU的串行計(jì)算;

第二階段,多CPU的同構(gòu)并行計(jì)算;

第三階段,CPU+GPU的異構(gòu)并行計(jì)算;

第四階段,CPU+DSA的異構(gòu)并行計(jì)算;

第五階段,(還在萌芽期的)多種異構(gòu)融合的超異構(gòu)并行計(jì)算。

aee7b632-2b9c-11ee-a368-dac502259ad0.png

如果我們?yōu)橛?jì)算架構(gòu)再加一個(gè)約束——通用,則計(jì)算架構(gòu)可以劃分為三個(gè)階段:

第一階段,CPU同構(gòu)計(jì)算(單核CPU階段可以合并進(jìn)CPU同構(gòu)計(jì)算);

第二階段,基于GPU的同構(gòu)計(jì)算(DSA是一種偏定制的架構(gòu),單個(gè)DSA的異構(gòu)不屬于通用計(jì)算范疇);

第三階段,基于CPU+GPU+DSAs的超異構(gòu)計(jì)算。

“二八定律”無(wú)處不在:隨著系統(tǒng)的擴(kuò)大,會(huì)逐漸沉淀許多共性的計(jì)算任務(wù)。我們定性的分析一下,依據(jù)二八定律:

在CPU同構(gòu)計(jì)算階段,100%工作由CPU完成;

但在GPU異構(gòu)階段,80%工作由GPU完成,CPU只完成剩余的20%的工作;

而在超異構(gòu)計(jì)算階段,則80%的工作由各類更高效的DSA完成,GPU只完成剩余20%工作的80%,即16%的工作,剩余的4%交給CPU。

2 從異構(gòu)到超異構(gòu)

2.1 CPU性能瓶頸,異構(gòu)計(jì)算成為主流

af28f2d2-2b9c-11ee-a368-dac502259ad0.png

上世紀(jì)80-90年代,每18個(gè)月,CPU性能提升一倍;如今,CPU性能提升每年只有3%,要想性能翻倍,需要20年。雖然CPU的性能提升幾乎停滯,但對(duì)性能和算力的更高需求,是永無(wú)止境的,例如:

2012-2018年共6年時(shí)間里,人們對(duì)于AI算力的需求增長(zhǎng)了超過(guò)30萬(wàn)倍;隨著BERT、GPT等大模型的發(fā)展,算力需求每2個(gè)月就翻一倍。

隨著大模型的發(fā)展,對(duì)算力的需求水漲船高,要想實(shí)現(xiàn)L5級(jí)別的自動(dòng)駕駛算力,則需要上萬(wàn)TOPS。與此同時(shí),隨著自動(dòng)駕駛進(jìn)入L5階段,對(duì)娛樂(lè)的需求必然猛增。多域融合的智能汽車綜合算力需求預(yù)計(jì)會(huì)超過(guò)兩萬(wàn)TOPS。

Intel前SVP拉加·庫(kù)德里表示,要想實(shí)現(xiàn)元宇宙級(jí)別的用戶體驗(yàn),需要當(dāng)前的算力提升1000倍。

從2012年深度學(xué)習(xí)興起開始,隨著AI等大算力場(chǎng)景的算力需求越來(lái)越大,異構(gòu)計(jì)算已經(jīng)成為計(jì)算架構(gòu)的主流。

2.2 異構(gòu)計(jì)算的問(wèn)題

性能和靈活性的矛盾:系統(tǒng)越復(fù)雜,越需要靈活的處理器;性能挑戰(zhàn)越大,越需要定制的加速處理器。問(wèn)題的本質(zhì)在于:?jiǎn)我坏奶幚砥魇菬o(wú)法兼顧性能和靈活性的。

由于在異構(gòu)計(jì)算系統(tǒng)中,CPU不承擔(dān)主要的計(jì)算任務(wù),因此加速處理器決定了異構(gòu)系統(tǒng)的性能/靈活性特征:

GPU靈活性較好,但性能效率不夠極致;并且性能也逐漸接近瓶頸。

DSA性能好;但靈活性差,難以適應(yīng)算法的多變;架構(gòu)碎片化;落地困難。

FPGA功耗和成本高,定制開發(fā),落地案例少,通常用于原型驗(yàn)證。

ASIC功能完全固定,無(wú)法適應(yīng)靈活多變的復(fù)雜計(jì)算場(chǎng)景。

af438e9e-2b9c-11ee-a368-dac502259ad0.png

隨著異構(gòu)計(jì)算成為主流,異構(gòu)的系統(tǒng)越來(lái)越多。多異構(gòu)共存的異構(gòu)計(jì)算孤島問(wèn)題凸顯:

加速處理器只考慮本領(lǐng)域問(wèn)題,難以考慮全局協(xié)同;

各領(lǐng)域加速器之間交互困難;

中心單元的性能瓶頸問(wèn)題;

物理空間有限,無(wú)法容納多個(gè)物理的異構(gòu)加速卡。

2.3 多種異構(gòu)的融合:超異構(gòu)

af5b1ea6-2b9c-11ee-a368-dac502259ad0.png

要想高性能,需要硬件層次的更高集成度,更需要系統(tǒng)層次的多種異構(gòu)融合(即超異構(gòu))。

超異構(gòu)計(jì)算:系統(tǒng)復(fù)雜度顯著上升,系統(tǒng)更難駕馭。如何在快速提升性能的同時(shí),讓系統(tǒng)更好駕馭,是超異構(gòu)計(jì)算要解決的關(guān)鍵問(wèn)題。

3 大算力芯片的核心能力:通用、通用,還是通用

3.1 系統(tǒng)越來(lái)越大,對(duì)通用靈活性的要求遠(yuǎn)高于對(duì)性能的要求

在云和邊緣數(shù)據(jù)中心,都是清一色的服務(wù)器。這些服務(wù)器,可以服務(wù)各行各業(yè)、各種不同類型的場(chǎng)景的服務(wù)端工作任務(wù)的處理。CSP每年投入數(shù)以億計(jì)資金,上架數(shù)以萬(wàn)計(jì)的各種型號(hào)、各種配置的服務(wù)器的時(shí)候,嚴(yán)格來(lái)說(shuō),它并不知道,具體的某臺(tái)服務(wù)器最終會(huì)售賣給哪個(gè)用戶,這個(gè)用戶到底會(huì)在服務(wù)器上面跑什么應(yīng)用。并且,未來(lái),這個(gè)用戶的服務(wù)器資源回收之后再賣個(gè)下一個(gè)用戶,下一個(gè)用戶又用來(lái)干什么,也是不知道的。因此,對(duì)CSP來(lái)說(shuō),最理想的狀態(tài)是,存在一種服務(wù)器,足夠通用,即不管是哪種用戶哪種應(yīng)用運(yùn)行其上,都足夠高效快捷并且低成本。只有這樣,系統(tǒng)才夠簡(jiǎn)單而穩(wěn)定,運(yùn)維才能簡(jiǎn)單并且高效。然后要做的,就是把這種服務(wù)器大規(guī)模復(fù)制(大規(guī)模復(fù)制意味著單服務(wù)器成本的更快速下降)。

云和邊緣服務(wù)器場(chǎng)景,對(duì)系統(tǒng)的靈活性的要求遠(yuǎn)高于對(duì)性能的要求,需要提供的是綜合性的通用解決方案。最直接的例子就是以CPU為核心的服務(wù)器:CPU通用靈活性是最好的,如果CPU的性能夠用,大家絕對(duì)不喜歡用各種加速;如今是CPU性能不夠,逼迫著大家不得不去使用各種硬件加速。

數(shù)據(jù)中心硬件加速最大的教訓(xùn)是:在提升性能的同時(shí),最好不要損失系統(tǒng)的靈活性。其言下之意就是:目前各類加速芯片的優(yōu)化方案損失了靈活性,從而使得芯片的落地很困難。這是目前全行業(yè)的痛點(diǎn)所在。

3.2 集群計(jì)算,對(duì)芯片的彈性可擴(kuò)展能力提出了更高的要求

af6fc7de-2b9c-11ee-a368-dac502259ad0.png

傳統(tǒng)的情況下,一個(gè)芯片對(duì)應(yīng)一個(gè)系統(tǒng)。我們關(guān)注業(yè)務(wù)常見的需求,并把它實(shí)現(xiàn)在芯片的功能和特征里。但在集群計(jì)算,特別是目前云網(wǎng)邊端不斷融合的超大集群計(jì)算形式下,則需要關(guān)注的是“以不變應(yīng)萬(wàn)變”,即足夠通用的、數(shù)以萬(wàn)計(jì)的計(jì)算設(shè)備組成的大規(guī)模計(jì)算集群,如何去覆蓋數(shù)以百萬(wàn)計(jì)的眾多計(jì)算場(chǎng)景的問(wèn)題。

這樣,對(duì)芯片內(nèi)的資源彈性和芯片的可擴(kuò)展性就提出了很高的要求,我們需要把數(shù)以萬(wàn)計(jì)的計(jì)算芯片的計(jì)算資源合并到一個(gè)計(jì)算資源池,然后還可以非常方便的快速切分和重組,供不同規(guī)格計(jì)算任務(wù)的使用。

3.3 芯片研發(fā)成本越來(lái)越高,需要芯片的大規(guī)模落地,來(lái)攤薄研發(fā)成本

af7adcbe-2b9c-11ee-a368-dac502259ad0.png

摩爾定律預(yù)示了:芯片工藝的發(fā)展,會(huì)使得晶體管數(shù)量大約每?jī)赡晏嵘槐?。雖然工藝的進(jìn)步逐步進(jìn)入瓶頸,但Chiplet越來(lái)越成為行業(yè)發(fā)展的重點(diǎn),這使得芯片的晶體管數(shù)量可以再一次數(shù)量級(jí)的提升。

在先進(jìn)工藝的設(shè)計(jì)成本方面,知名半導(dǎo)體研究機(jī)構(gòu)Semiengingeering統(tǒng)計(jì)了不同工藝下芯片所需費(fèi)用(費(fèi)用包括了):

28nm節(jié)點(diǎn)開發(fā)芯片只需要5130萬(wàn)美元;

16nm節(jié)點(diǎn)則需要1億美元;

7nm節(jié)點(diǎn)需要2.97億美元;

到了5nm節(jié)點(diǎn),費(fèi)用高達(dá)5.42億美元;

3nm節(jié)點(diǎn)的研發(fā)費(fèi)用,預(yù)計(jì)將接近10億美元。

就意味著,大芯片需要足夠通用,足夠大范圍落地,才能在商業(yè)邏輯上成立。做一個(gè)保守的估算:

終端場(chǎng)景,(大)芯片的銷售量至少需要達(dá)到數(shù)千萬(wàn)級(jí)才能有效攤薄一次性的研發(fā)成本;

在數(shù)據(jù)中心場(chǎng)景,則需要50萬(wàn)甚至100萬(wàn)以上的銷售量,才能有效攤薄研發(fā)成本。

4 超異構(gòu)計(jì)算的載體:通用的超異構(gòu)處理器

通用的超異構(gòu)處理器(GP-HPU, General Purpose Hyper-heterogeneous Processing Unit, 通用超異構(gòu)處理器),即能夠覆蓋幾乎所有場(chǎng)景的、以超異構(gòu)計(jì)算為基礎(chǔ)架構(gòu)的、綜合性的大算力單芯片。

4.1 超異構(gòu)計(jì)算的關(guān)鍵,在于各類加速處理器的高效交互

afa7ce22-2b9c-11ee-a368-dac502259ad0.png

SOC和HPU都是多異構(gòu)組成的混合計(jì)算,但SOC本質(zhì)上屬于異構(gòu)計(jì)算,而HPU屬于超異構(gòu)計(jì)算。SOC僅僅是異構(gòu)的集成,而HPU則需要實(shí)現(xiàn)異構(gòu)的融合。

在SOC系統(tǒng)里,每個(gè)加速單元可以看做是CPU+加速單元組成一個(gè)異構(gòu)子系統(tǒng);不同的異構(gòu)子系統(tǒng)之間在硬件上是沒(méi)有必然聯(lián)系,需要通過(guò)軟件構(gòu)建異構(gòu)子系統(tǒng)之間的交互和協(xié)同。在CPU性能逐漸瓶頸的當(dāng)下,這通常也意味著性能的約束。

而在HPU里,需要實(shí)現(xiàn)硬件層次的不同加速單元之間的直接的、高效的數(shù)據(jù)交互,不需要CPU的參與。在硬件層次,超異構(gòu)需要實(shí)現(xiàn)CPU、GPU以及各種其他加速單元之間的對(duì)等的深度交互、協(xié)同和融合。

4.2 目前,多個(gè)獨(dú)立芯片組成超異構(gòu)計(jì)算,還比較難

afccceb6-2b9c-11ee-a368-dac502259ad0.png

依據(jù)性能/靈活性特征,可以將系統(tǒng)分為三個(gè)層次:

基礎(chǔ)設(shè)施層。隨著系統(tǒng)越來(lái)越復(fù)雜,在系統(tǒng)中,有很多非常確定性的任務(wù),比如虛擬化、網(wǎng)絡(luò)、存儲(chǔ)等,這些可以稱為基礎(chǔ)設(shè)施型任務(wù)。這類任務(wù)因?yàn)槠浯_定性的特點(diǎn),特別適合DSA/ASIC級(jí)別的加速處理器處理。

另一個(gè)極端,即不太好加速的應(yīng)用部分。在硬件平臺(tái)上到底會(huì)運(yùn)行什么樣的應(yīng)用,通常是不可預(yù)知的,或者說(shuō)應(yīng)用是非常不確定的。因此,針對(duì)應(yīng)用,最好是用CPU(+協(xié)處理器)平臺(tái)。CPU平臺(tái)還有另外一個(gè)價(jià)值,兜底,凡是無(wú)法加速或者不存在合適加速處理器的工作任務(wù)都可以放在CPU平臺(tái)處理。

處于兩個(gè)極端之間的部分任務(wù),則通常是性能敏感的應(yīng)用任務(wù),比如AI訓(xùn)練、視頻圖形處理、語(yǔ)音處理等。這類任務(wù)具有一定的確定性,但通常還是需要平臺(tái)的一些彈性的能力,其性能/靈活性特征處于前面兩個(gè)極端的中間。因此比較適合GPU、FPGA這樣的處理器平臺(tái)。

理論上,我們可以按照超異構(gòu)計(jì)算的功能劃分和系統(tǒng)交互,把三類功能實(shí)現(xiàn)在CPU、GPU和DPU三芯片里,但目前三者處于相互競(jìng)爭(zhēng)的狀態(tài),三芯片協(xié)作的方式,本質(zhì)上只能實(shí)現(xiàn)以CPU為中心的異構(gòu)計(jì)算形態(tài),而無(wú)法實(shí)現(xiàn)三者深度協(xié)同的超異構(gòu)計(jì)算形態(tài)。

并且,三顆芯片,通常來(lái)自于不同的芯片公司,各個(gè)芯片都很難放棄以自己為核心的系統(tǒng)運(yùn)行方式。要想這些芯片公司能夠更多的考慮和其他芯片的協(xié)同,從而實(shí)現(xiàn)三芯片的通力合作,很難很難。

基于CPU、GPU和DPU三芯片的超異構(gòu)計(jì)算,還有很長(zhǎng)的路要走。

4.3 在單芯片層次,實(shí)現(xiàn)相對(duì)簡(jiǎn)單的超異構(gòu)計(jì)算,是可行的路徑

afe6e99a-2b9c-11ee-a368-dac502259ad0.png

單芯片,不需要考慮和外部芯片的協(xié)同,只需要考慮內(nèi)部不同單元間的深度交互。一切都在自己的掌控之下,因此單芯片超異構(gòu)計(jì)算,是相對(duì)容易落地的實(shí)現(xiàn)方式。

此外,單芯片方式,也有其他的好處:

更高集成度,代表著更高的性能,以及更低的成本;

內(nèi)部交互更高效,代表著沒(méi)有各類性能瓶頸約束,可以實(shí)現(xiàn)更高的性能。

5 超異構(gòu)計(jì)算的挑戰(zhàn),不在芯片集成,而在系統(tǒng)的融合和系統(tǒng)的可駕馭

5.1 硬件層次的多異構(gòu)集成,不是難度

affb0b5a-2b9c-11ee-a368-dac502259ad0.png

工藝持續(xù)進(jìn)步、3D堆疊以及Chiplet多Die互聯(lián),使得芯片從2D->3D->4D。這些技術(shù)的進(jìn)步,意味著在芯片這個(gè)尺度,可以容納更多的晶體管,也意味著芯片的規(guī)模越來(lái)越大。

b04b679e-2b9c-11ee-a368-dac502259ad0.png

Intel宣布,在2030年,將實(shí)現(xiàn)單芯片層次集成1萬(wàn)億晶體管,這意味著在單芯片層次,可以構(gòu)建,相比目前,規(guī)模數(shù)量級(jí)提升的系統(tǒng)。

實(shí)現(xiàn)更多異構(gòu)的集成,是芯片制造和封裝的核心競(jìng)爭(zhēng)力,不是芯片設(shè)計(jì)公司(Fabless)的核心競(jìng)爭(zhēng)力。

5.2 挑戰(zhàn)在于,軟件層次,如何把多個(gè)系統(tǒng)整合到一個(gè)宏系統(tǒng)

b06b234a-2b9c-11ee-a368-dac502259ad0.png

我們以自動(dòng)駕駛汽車中央控制器CCU為例。Thor能夠?qū)崿F(xiàn)多域融合計(jì)算,它可以為自動(dòng)駕駛和車載娛樂(lè)劃分任務(wù)。通常,這些各種類型的功能由分布在車輛各處的數(shù)十個(gè)控制單元控制。制造商可以利用Thor實(shí)現(xiàn)所有功能的融合,來(lái)整合整個(gè)車輛,而不是依賴這些分布式的ECU/DCU。

b091746e-2b9c-11ee-a368-dac502259ad0.png

傳統(tǒng)SOC是單芯片單系統(tǒng),而Thor實(shí)現(xiàn)了單芯片多個(gè)系統(tǒng)共存。在一個(gè)硬件上,把多個(gè)架構(gòu)不同的系統(tǒng)整合成一個(gè)宏系統(tǒng),則涉及到整個(gè)系統(tǒng)軟硬件架構(gòu)的重構(gòu)。

在系統(tǒng)和架構(gòu)層面,如何實(shí)現(xiàn)更多系統(tǒng)的融合,是芯片設(shè)計(jì)公司的核心競(jìng)爭(zhēng)力。

5.3 更大的挑戰(zhàn)在于,如何讓超異構(gòu)更好駕馭

串行計(jì)算符合人類思維,編程相對(duì)最簡(jiǎn)單;同構(gòu)并行的編程,就要復(fù)雜很多;異構(gòu)并行,則更是難上加難;那么超異構(gòu)并行呢?那就是難上加難再加難。

要想駕馭超異構(gòu),核心的思路跟駕馭異構(gòu)計(jì)算的思路一致,就是要想方設(shè)法降低軟硬件系統(tǒng)的復(fù)雜度。一些典型的降低復(fù)雜度的方法:

復(fù)雜大系統(tǒng)分解成簡(jiǎn)單小系統(tǒng),實(shí)現(xiàn)芯片內(nèi)部的分布式計(jì)算,每個(gè)內(nèi)部子節(jié)點(diǎn)的復(fù)雜度較低,更加可控一些。

依據(jù)系統(tǒng)的性能/靈活性特征進(jìn)行分層。不同層次,采用不同的處理策略。

開放:讓處理器架構(gòu)和生態(tài)收斂,防止碎片化。同時(shí),行業(yè)內(nèi)也能相互分工協(xié)作,而不是一家公司面對(duì)所有問(wèn)題。

軟硬件深度融合,讓硬件具有更多軟件的能力。

6 第三代通用計(jì)算,“大算力芯片”的未來(lái)

CPU同構(gòu)是第一代通用計(jì)算,成就了Intel的王者地位;GPU異構(gòu)是第二代通用計(jì)算,隨著人工智能的火爆,遠(yuǎn)超Intel、AMD高通的總和。

但技術(shù)發(fā)展不會(huì)停止。隨著AI大模型、自動(dòng)駕駛、元宇宙等超高算力需求的領(lǐng)域快速發(fā)展,算力仍需持續(xù)快速提升,算力成本必須數(shù)量級(jí)下降,計(jì)算架構(gòu)需要從同構(gòu)、異構(gòu)走向多種異構(gòu)融合的超異構(gòu)。




審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1630

    文章

    21796

    瀏覽量

    605248
  • asic
    +關(guān)注

    關(guān)注

    34

    文章

    1206

    瀏覽量

    120664
  • DSA
    DSA
    +關(guān)注

    關(guān)注

    0

    文章

    50

    瀏覽量

    15222
  • 多核處理器
    +關(guān)注

    關(guān)注

    0

    文章

    109

    瀏覽量

    19950
  • 自動(dòng)駕駛
    +關(guān)注

    關(guān)注

    784

    文章

    13923

    瀏覽量

    166835

原文標(biāo)題:第三代通用計(jì)算,“大算力芯片”的未來(lái)

文章出處:【微信號(hào):bdtdsj,微信公眾號(hào):中科院半導(dǎo)體所】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    2017年智能醫(yī)療龍頭股_最新智能醫(yī)療概念龍頭股一覽

    本文以智能醫(yī)療為中心,主要介紹了智能醫(yī)療的未來(lái)發(fā)展方向,其次列舉了目前幾個(gè)最新的智能醫(yī)療概念龍頭股,僅供參考!
    發(fā)表于 01-02 08:36 ?4w次閱讀

    最新大數(shù)據(jù)概念龍頭_大數(shù)據(jù)概念龍頭股有哪些

    本文介紹了什么是大數(shù)據(jù)、大數(shù)據(jù)有哪些特征以及詳細(xì)的介紹了大數(shù)據(jù)的結(jié)構(gòu),最后介紹了本文的中心即大數(shù)據(jù)概念龍頭股有哪些、最新大數(shù)據(jù)概念龍頭詳情。
    發(fā)表于 01-05 08:41 ?4.4w次閱讀
    最新大數(shù)據(jù)概念<b class='flag-5'>股</b><b class='flag-5'>龍頭</b>_大數(shù)據(jù)概念<b class='flag-5'>龍頭股</b>有哪些

    PCB概念上漲的邏輯是什么_龍頭股有哪些?

    今天的市場(chǎng)熱點(diǎn)上,有個(gè)新題材引人注目,那就是PCB,那PCB概念上漲的邏輯是什么?龍頭股有哪些?
    的頭像 發(fā)表于 07-23 09:19 ?1.5w次閱讀
    PCB概念上漲的邏輯是什么_<b class='flag-5'>龍頭股</b>有哪些?

    最新芯片龍頭股一覽表

    芯片是一種非常精細(xì)的半導(dǎo)體元件,并且前景廣闊,那么最新芯片龍頭股有哪些呢?下面是小編為您整理的最新芯片龍頭股一覽表。 1.兆易創(chuàng)新 兆易創(chuàng)新
    的頭像 發(fā)表于 12-08 16:30 ?1.6w次閱讀

    電子芯片龍頭股票有哪些

    龍頭股指的是某一時(shí)期在股票市場(chǎng)的炒作中對(duì)同行業(yè)板塊的其他股票具有影響和號(hào)召的股票,它的漲跌往往對(duì)其他同行業(yè)板塊股票的漲跌起引導(dǎo)和示范作用;龍頭股并不是一成不變的,它的地位往往只能維持一段時(shí)間。
    的頭像 發(fā)表于 12-09 09:33 ?3021次閱讀

    2021汽車芯片龍頭股排名前十

    以上內(nèi)容就是2021汽車芯片龍頭股排名前十的內(nèi)容,汽車芯片短缺還會(huì)持續(xù)多久,芯片什么時(shí)候能正常供應(yīng)現(xiàn)在還不得知,此前曾有分析師預(yù)測(cè)預(yù)計(jì)汽車芯片
    的頭像 發(fā)表于 12-09 14:12 ?3.4w次閱讀

    芯片龍頭股有哪些股票代碼

    所謂的龍頭股,是指某一時(shí)期在股票市場(chǎng)的炒作中對(duì)同行業(yè)板塊的其他股票具有影響和號(hào)召的股票,它的漲跌往往對(duì)其他同行業(yè)板塊股票的漲跌起引導(dǎo)和示范作用。接下來(lái)我們?cè)敿?xì)了解下2021年的芯片龍頭股
    的頭像 發(fā)表于 12-09 16:25 ?1w次閱讀

    芯片股份龍頭股一覽表

    幾年來(lái),縱觀我A股市場(chǎng)芯片板塊,可以看到各大芯片個(gè)股均有著不錯(cuò)的增長(zhǎng)幅度,這也在一定程度上反映了我國(guó)芯片產(chǎn)業(yè)的成長(zhǎng),很多股民也想關(guān)注一些芯片龍頭股
    的頭像 發(fā)表于 12-10 10:19 ?5181次閱讀

    芯片概念龍頭股有哪些股票

    芯片概念龍頭股有哪些股票?芯片概念龍頭股有北方華創(chuàng)、中微公司、長(zhǎng)電科技、中穎電子、上海新陽(yáng)、康強(qiáng)電子、通富微電、匯頂科技、紫光國(guó)微、中芯國(guó)際、中興通訊、華天科技、兆易創(chuàng)新、華微電子、上
    的頭像 發(fā)表于 12-10 10:52 ?9653次閱讀

    半導(dǎo)體芯片龍頭股有哪些

    近幾年查看我國(guó)的A股市場(chǎng)芯片板塊,有很多的芯片龍頭股有著不錯(cuò)的增長(zhǎng)幅度,這也說(shuō)明了我國(guó)芯片正在成長(zhǎng)。那么半導(dǎo)體芯片
    的頭像 發(fā)表于 12-10 14:35 ?6.2w次閱讀

    2021年芯片A龍頭股介紹

    A龍頭股 兆易創(chuàng)新:國(guó)內(nèi)存儲(chǔ)芯片設(shè)計(jì)龍頭。 韋爾股份:模擬芯片龍頭、半導(dǎo)體器件和電源管理IC等
    的頭像 發(fā)表于 12-10 14:26 ?7362次閱讀

    股票芯片龍頭股有哪些

    現(xiàn)在面臨的芯片短缺狀況愈演愈烈,許多企業(yè)都已經(jīng)漲價(jià),在芯片短缺的情況下,股票芯片龍頭股便成了焦點(diǎn),那么股票芯片
    的頭像 發(fā)表于 12-10 14:59 ?4719次閱讀

    a芯片龍頭股有哪些

    縱觀我國(guó)的A股市場(chǎng)芯片板塊,可以發(fā)現(xiàn)芯片個(gè)股增長(zhǎng)幅度都非常的不錯(cuò),這說(shuō)明了我國(guó)芯片產(chǎn)業(yè)正在成長(zhǎng),那么a芯片
    的頭像 發(fā)表于 12-10 17:44 ?2w次閱讀

    芯片板塊龍頭股一覽表

    近幾年查看我國(guó)的芯片板塊龍頭股,挺多的芯片龍頭股都是增長(zhǎng)幅度,這也說(shuō)明了我國(guó)芯片正在成長(zhǎng)。那么小編就帶大家一起來(lái)看看
    的頭像 發(fā)表于 12-13 10:23 ?3.5w次閱讀

    最新半導(dǎo)體芯片龍頭股有哪些

    縱谷我國(guó)的芯片板塊龍頭股,有很多的芯片龍頭股都是增長(zhǎng)幅度,這也說(shuō)明了我國(guó)芯片正在成長(zhǎng)。那么最新半導(dǎo)體芯片
    的頭像 發(fā)表于 12-14 14:36 ?4.3w次閱讀
    主站蜘蛛池模板: 亚洲国产在线视频精品 | 夜色资源站国产www在线视频 | 麻豆AV福利AV久久AV | 蜜桃婷婷狠狠久久综合9色 蜜桃视频一区二区 | 欧美另类与牲交ZOZOZO | 免费在线视频一区 | 美国女孩毛片 | 国产国拍亚洲精品永久软件 | 日本高清免费一本在线观看 | 青青久 | 被吊起玩弄的女性奴 | 国产在线精品亚洲第1页 | 久久伊人天堂视频网 | 午夜理伦片免费 | 狠狠啪 日日啪 | 国产亚洲精品久久久久久线投注 | 玖玖爱这里只有精品视频 | 中文字幕精品在线视频 | 99re8热视频这在线视频 | 国产麻豆剧看黄在线观看 | 精品一产品大全 | 性xxx免费 | 中文字幕专区高清在线观看 | 99精品观看 | 亚洲精品AV一区午夜福利 | 一本之道高清在线观看免费 | 色久久综合视频本道88 | 91精品一区二区三区在线观看 | 日韩人妻无码专区一本二本 | 激情内射亚州一区二区三区爱妻 | 精品国产麻豆免费人成网站 | a一级一片免费观看视频 | 久久热最新网站获取3 | 超碰免费视频caopoom9 | 亚洲伊人久久大香线蕉综合图片 | 日本久久久WWW成人免费毛片丨 | 中文字幕无码亚洲字幕成A人蜜桃 | 色四房播播 | 欧美亚洲曰韩一本道 | 国产色情短视频在线网站 | 亚洲色综合中文字幕在线 |