色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

混合鍵合的發展趨勢和挑戰

半導體產業縱橫 ? 來源:半導體產業縱橫 ? 2023-07-15 16:28 ? 次閱讀

本文由半導體產業縱橫(ID:ICVIEWS)編譯自3dincites

在本文中,我們將討論混合鍵合的趨勢、混合鍵合面臨的挑戰以及提供最佳解決方案的工具。

幾十年來,摩爾定律一直是衡量半導體行業性能提升的一種方法,但每兩年將芯片晶體管的密度增加一倍的能力變得越來越具有挑戰性。隨著規模擴大達到極限,制造商正在尋求先進的封裝創新。銅對銅混合鍵合是業界尋求擴展不斷增加的 I/O 密度和更快連接的一種方式,同時使用更少的能源。

目前,混合鍵合主要用于CMOS 圖像傳感器 (CIS) 設備,有望成為需要高帶寬數據傳輸的設備中微凸塊的繼任者,特別是那些專為人工智能 (AI)、高性能計算 (HPC) 和圖形設計的設備處理器單元 (GPU)。然而,在 10μm 以下的間距下,微凸塊的問題日益嚴重。當凸塊結構較大時,電鍍微凸塊高度的非常小的不均勻性或焊料回流工藝的變化可以忽略不計,但對于細間距微凸塊,這些小的變化可能導致不良的接頭形成并產生影響。

縮放微凸塊的另一個挑戰是,在如此精細的間距下,凸塊的焊料可能會橋接,導致短路。此外,控制這些小結構的電鍍均勻性具有挑戰性,同時還需要能夠找到新的、更合適的底部填充材料來填充微凸塊之間不斷縮小的空間。

通過混合鍵合實現的直接細間距銅對銅互連將允許連接數量是微凸塊的 1,000 倍。但混合鍵合雖然能夠帶來更高性能的人工智能、HPC、GPU 和圖像傳感器,但也帶來了挑戰。比如說,表面清潔度至關重要。

先進的封裝設施必須使用接近前端晶圓廠水平的潔凈室標準,以及檢測工具來發現亞微米顆粒和缺陷。其他值得關注的領域包括減薄晶圓的翹曲、鍵合表面的對準誤差、銅焊盤高度的精確控制。因此,還必須使用高性能計量工具。

在本文中,我們將討論混合鍵合的趨勢、混合鍵合面臨的挑戰以及提供最佳解決方案的工具。

為什么采用混合鍵合?

與微凸塊相比,過渡到混合鍵合的原因相當簡單。3D 內存堆棧和異構集成(超越摩爾時代的兩個參與者)需要極高的互連密度。混合粘合可以滿足這一需求。與本身支持高密度互連方案的微凸塊相比,混合鍵合可提供更小尺寸的 I/O 端子和減小間距的互連。每個芯片之間的間隔距離取決于微凸塊的高度,但在混合鍵合中該距離幾乎為零。因此,混合鍵合互連方案可以顯著降低整體封裝厚度,在多芯片堆疊封裝中甚至可能高達數百微米。

目前存在三種混合鍵合方法:晶圓到晶圓 (W2W)、一對一芯片到晶圓 (D2W) 和集體 D2W。通過W2W 鍵合,兩個晶圓直接彼此鍵合。這是 CIS 背面照明技術(BSI) 架構的常用方法。通過一對一的 D2W 鍵合,使用拾放式倒裝晶圓鍵合機將單個芯片逐一鍵合至目標晶圓上,從而實現重建晶圓和目標晶圓的 W2W 接合。

如今,混合鍵合已被證明在 3D NAND 堆棧和 3D 片上系統 (SoC) 的大批量制造中是可行的。關于混合鍵合在高帶寬存儲器 (HBM) 中的應用以及微凸塊間距小于 10μm 時的其他 3D 集成應用的研究和開發正在進行中。

混合鍵合市場

根據Yole Group的晶圓產量預測,從2021年到2027年,高端封裝市場預計將以22%的復合年增長率增長。這些高端應用包括 3D NAND、3D SoC、HBM 和 3DS、Si 中介層/橋集成以及超高密度扇出封裝。

對于這些高端應用,混合鍵合的采用處于不同的階段。目前,3D 內存堆棧是混合鍵合的容量驅動因素,并且應該保持這種狀態,而 3D NAND 最初正在被采用,HBM 應該效仿這一舉措。此外,最初將使用的3D SoC產品尚不清楚。我們預計在未來兩到三年內將推出更多采用混合鍵合的設備。

挑戰和過程控制需求

混合鍵合的性能提升肯定會導致鍵合技術在市場上的使用增加,特別是在高性能計算、數據中心網絡自動駕駛汽車中,但這種新興技術帶來的挑戰是對于組裝和測試都很重要。重疊錯誤和影響良率的空洞缺陷是嚴重的問題,而電遷移、分層和銅擴散則極大地影響可靠性。

6f29dbdc-22c4-11ee-962d-dac502259ad0.png

混合鍵合的突出問題

混合鍵合預鍵合步驟中更重大的挑戰之一涉及要連接的兩個銅焊盤的互連。為了使工藝發揮作用并成功粘合兩個焊盤,必須使用化學機械平坦化 (CMP) 以確保銅焊盤在氧化物中具有適當小的表面凹進。這使得兩個銅焊盤能夠膨脹并接觸,并最終通過退火工藝進行鍵合,同時不會解開先前在銅焊盤周圍形成的電介質-電介質鍵合。

6f6ccc8a-22c4-11ee-962d-dac502259ad0.png

混合鍵合工藝

考慮到所有這些,建立和維護嚴格控制的電鍍和 CMP 工藝是必要的。如果沒有如此嚴格的控制,綁定就不會成功,HVM 也不可行。為了實現這一目標,需要高精度高通量計量測量和控制技術來監測介電膜和銅厚度以及表面形貌。

顆粒控制是混合鍵合工藝中強制性但困難的部分,因為許多后端工藝容易產生碎片。這些后端工藝包括晶圓研磨、晶圓邊緣修整、晶圓鋸切和貼帶/去貼帶。傳統后端檢測要求缺陷靈敏度大于 5μm,而混合鍵合所需的表面缺陷檢測要低得多。為滿足混合鍵合缺陷檢測標準而設計的工具必須具有更高的分辨率和速度來檢測這些納米級缺陷。一旦兩個銅焊盤粘合在一起,如果無法識別關鍵尺寸的顆粒,就會顯著增加產生比初始亞微米顆粒大 10 倍或更大的空隙的可能性。

在混合鍵合過程中,幾個關鍵工藝步驟帶來了不同的挑戰和障礙。除了 CMP 后的顆粒和表面形貌問題外,其他挑戰還包括芯片裂紋和晶圓翹曲。CMP 后晶圓上介電膜的總厚度變化也會影響鍵合工藝。因此,除了用于芯片級裂紋/顆粒檢測的高通量檢測工具之外,后端晶圓廠還需要用于薄膜厚度測量的計量工具。

最后,在后鍵合階段,檢查和計量工具繼續在過程控制中發揮著至關重要的作用。這些工具需要測量粘合層厚度和焊盤對齊情況,并能夠識別空隙。高速紅外檢測系統可用于識別空隙和其他缺陷,但應用于識別金屬下的空隙時存在局限性。

只有已知良好的芯片才會進行混合鍵合,對于多芯片堆疊 3D 封裝(例如 HBM),必須重復多次此過程。鑒于其復雜性和嚴格的要求,嚴格的過程控制對于堆疊過程的每個步驟都至關重要。能夠追蹤每個芯片和每個工藝步驟的譜系的分析軟件可以為提高產量帶來寶貴的信息

結論

Cu-to-Cu 混合鍵合的使用正在超越CIS 器件,因為它被用于 3D NAND 和 3D SoC。更多的應用即將出現。但這個超越摩爾時代的潛在組成部分面臨著巨大的挑戰。為了成功實施混合鍵合,需要多種工具。計量工具可用于測量 CMP 前后的電介質、銅膜厚度和形貌,以及識別金屬膜堆疊空隙。檢查工具可用于檢測顆粒、裂紋和空隙,而具有紅外功能的工具可能具有優勢。檢查工具還可用于測量殘留硅厚度并檢查減薄后的背面。最后,分析軟件也可用于實現小芯片和流程的追溯。

有了這些解決方案和流程,混合鍵合應該會得到進一步、可能的快速落地,從而為服務器和網絡交換機、AI/ML 和 AR/VR 以及自動駕駛汽車帶來性能提升。

審核編輯:湯梓紅
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    456

    文章

    51154

    瀏覽量

    426216
  • 半導體
    +關注

    關注

    334

    文章

    27687

    瀏覽量

    221431
  • 晶圓
    +關注

    關注

    52

    文章

    4973

    瀏覽量

    128208
  • 鍵合
    +關注

    關注

    0

    文章

    64

    瀏覽量

    7908

原文標題:混合鍵合的現狀和未來發展

文章出處:【微信號:ICViews,微信公眾號:半導體產業縱橫】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    stm8的發展趨勢

    大家來討論一下stm8的發展趨勢,聽說最近挺火哦!
    發表于 11-04 15:27

    先進封裝技術的發展趨勢

    達到一定的臨界值后不再顯著變化。這又是封裝技術不同于前端工藝的重要特性。4 各種半導體封裝內部連接方式的相互關系引線鍵合與倒裝芯片作為目前半導體封裝內部兩種代表性的連接方式,關于各自的發展趨勢以及相互
    發表于 11-23 17:03

    藍牙技術未來的發展趨勢

    藍牙技術未來的發展趨勢,在APTX后還會有怎么樣的技術革新
    發表于 03-29 15:56

    電源模塊的未來發展趨勢如何

    電源模塊的未來發展趨勢如何
    發表于 03-11 06:32

    電池供電的未來發展趨勢如何

    電池供電的未來發展趨勢如何
    發表于 03-11 07:07

    Multicom發展趨勢如何?它面臨哪些挑戰

    Multicom發展趨勢如何?開發Multicom無線產品時需要面臨哪些挑戰?如何突破測試Multicom產品的難題呢?有沒有一種解決方案可以既縮短測試時間又節約測試成本呢?
    發表于 04-15 06:26

    嵌入式開發工具面臨的挑戰是什么?未來的發展趨勢呢?

    嵌入式開發工具面臨的挑戰是什么一種新的調試體系結構CoreSight嵌入式開發工具發展趨勢是什么
    發表于 04-27 06:58

    汽車電子技術的發展趨勢是什么?

    汽車電子技術的發展趨勢是什么?
    發表于 05-17 06:33

    CMOS射頻電路的發展趨勢如何?

    CMOS射頻電路的發展趨勢如何?
    發表于 05-31 06:05

    未來PLC的發展趨勢將會如何?

    未來PLC的發展趨勢將會如何?基于PLC的運動控制器有哪些應用?
    發表于 07-05 07:44

    今年我國電池行業發展趨勢挑戰

    今年我國電池行業發展趨勢挑戰  &nbs
    發表于 10-19 16:39 ?451次閱讀

    高速數字總線技術發展趨勢及測試挑戰

    本文檔內容介紹了高速數字總線技術發展趨勢及測試挑戰
    發表于 09-15 15:36 ?7次下載
    高速數字總線技術<b class='flag-5'>發展趨勢</b>及測試<b class='flag-5'>挑戰</b>

    混合發展與應用

    兩片晶圓面對面合時是銅金屬對銅金屬、介電值對介電質,兩邊介面的形狀、位置完全相同,晶粒大小形狀也必須一樣。所以使用混合
    的頭像 發表于 05-08 09:50 ?1355次閱讀

    什么是混合?為什么要使用混合

     要了解混合,需要了解先進封裝行業的簡要歷史。當電子封裝行業發展到三維封裝時,微凸塊通過使用芯片上的小銅凸塊作為晶圓級封裝的一種形式,在芯片之間提供垂直互連。凸塊的尺寸范圍很廣,從
    發表于 11-22 16:57 ?5100次閱讀
    什么是<b class='flag-5'>混合</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>?為什么要使用<b class='flag-5'>混合</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>?

    混合的基本原理和優勢

    混合(Hybrid Bonding)是半導體封裝領域的新興技術,能夠實現高密度三維集成,無需傳統的焊料凸點。本文探討混合
    的頭像 發表于 10-30 09:54 ?892次閱讀
    <b class='flag-5'>混合</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>的基本原理和優勢
    主站蜘蛛池模板: 欧美日韩精品久久久免费观看 | 黄色软件视频app | 日韩欧美一区二区三区免费观看 | 久久99re66热这里只有精品 | 久久女婷五月综合色啪 | 亚洲一区在线观看无码欧美 | 看美女大腿中间的部分 | 亚洲欧美中文字幕先锋 | 人妻夜夜爽天天爽三区麻豆AV网站 | 久久ZYZ资源站无码中文动漫 | 色综合五月激情综合色一区 | 拔擦拔擦8X永久华人免费播放器 | 99国产精品久久 | 午夜向日葵视频在线观看 | 好大好硬好爽好深好硬视频 | 久久黄色精品视频 | 亚洲欧美综合在线中文 | 九九99热久久精品在线6 | 亚洲狠狠网站色噜噜 | 秋秋影视午夜福利高清 | 含羞草最新版本 | 在线视频 中文字幕 | 奇米狠狠干 | 午夜天堂一区人妻 | 上课失禁丨vk | 扒开校花粉嫩小泬喷潮漫画 | 我和黑帮老大第365天第2季在线 | 欧美ZC0O人与善交的最新章节 | BL文高H强交 | 亚洲精品国产AV成人毛片 | ass亚洲熟妇毛耸耸pics | 有人有片的观看免费视频 | 欧美日韩另类在线专区 | 久久国产乱子伦免费精品 | 亚洲高清视频在线观看 | 在线 国产 欧美 专区 | 亚洲一级电影 | 久久精品免费观看久久 | 少妇伦子伦精品无码 | 综合久久伊人 | 国产剧情在线精品视频不卡 |