1、GPIO原理與結構
GPIO是I/O的最基本形式,它是一組輸入引腳或輸出引腳。有些GPIO引腳能夠加以編程改變工作方向,通常有兩個控制寄存器:數據寄存器和數據方向寄存器。數據方向寄存器設置端口的方向。
如果將引腳設置為輸出,那么數據寄存器將控制著該引腳狀態。若將引腳設置為輸入,則此輸入引腳的狀態由引腳上的邏輯電路層來實現對它的控制。
2、A/D接口
(1)A/D轉換器是把電模擬量轉換為數字量的電路。
實現A/D轉換的方法有很多,常用的方法有計數法、雙積分法和逐次逼進法。
(2)計數式A/D轉換法
其電路主要部件包括:比較器、計數器、D/A轉換器和標準電壓源。
其工作原理簡單來說就是,有一個計數器,從0開始進行加1計數,每進行一次加1,該數值作為D/A轉換器的輸入,其產生一個比較電壓VO與輸入模擬電壓VIN進行比較。如果VO小于VIN則繼續進行加1計數,直到VO大于VIN,這時計數器的累加數值就是A/D轉換器的輸出值。
這種轉換方式的特點是簡單,但是速度比較慢,特別是模擬電壓較高時,轉換速度更慢。例如對于一個8位A/D轉換器,若輸入模擬量為最大值,計數器要從0開始計數到255,做255次D/A轉換和電壓比較的工作,才能完成轉換。
(3)雙積分式A/D轉換法
其電路主要部件包括:積分器、比較器、計數器和標準電壓源。
其工作原理是,首先電路對輸入待測電壓進行固定時間的積分,然后換為標準電壓進行固定斜率的反向積分,反向積分進行到一定時間,便返回起始值。
由于使用固定斜率,對標準電壓進行反向積分的時間正比于輸入模擬電壓值,輸入模擬電壓越大,反向積分回到起始值的時間越長。只要用標準的高頻時鐘脈沖測定反向積分花費的時間,就可以得到相應于輸入模擬電壓的數字量,也就完成了A/D轉換。
其特點是,具有很強的抗工頻干擾能力,轉換精度高,但轉換速度慢,通常轉換頻率小于10Hz,主要用于數字式測試儀表、溫度測量等方面。
(4)逐次逼近式A/D轉換法
其電路主要部件包括:比較器、D/A轉換器、逐次逼近寄存器和基準電壓源。
其工作原理是,實質上就是對分搜索法,和平時天平的使用原理一樣。在進行A/D轉換時,由D/A轉換器從高位到低位逐位增加轉換位數,產生不同的輸出電壓,把輸入電壓與輸出電壓進行比較而實現。
首先使最高位為1,這相當于取出基準電壓的1/2與輸入電壓比較,如果在輸入電壓小于1/2的基準電壓,則最高位置0,反之置1。之后,次高位置1,相當于在1/2的范圍中再作對分搜索,以此類推,逐次逼近。
其特點是,速度快,轉換精度高,對N位A/D轉換器只需要M個時鐘脈沖即可完成,一般可用于測量幾十到幾百微秒的過渡過程的變化,是目前應用最普遍的轉換方法。
(5)A/D轉換的重要指標(有可能考一些簡單的計算)
A、分辨率:反映A/D轉換器對輸入微小變化響應的能力,通常用數字輸出最低位(LSB)所對應的模擬電壓的電平值表示。n位A/D轉換器能反映1/2n滿量程的模擬輸入電平。
B、量程:所能轉換的模擬輸入電壓范圍,分為單極性和雙極性兩種類型。
C、轉換時間:完成一次A/D轉換所需要的時間,其倒數為轉換速率。
D、精度:精度與分辨率是兩個不同的概念,即使分辨率很高,也可能由于溫漂、線性度等原因使其精度不夠高。精度有絕對精度和相對精度兩種表示方法。通常用數字量的最低有效位LSB的分數值來表示絕對精度,用其模擬電壓滿量程的百分比來表示相對精度。
例如,滿量程10V,10位A/D芯片,若其絕對精度為±1/2LSB,則其最小有效位LSB的量化單位為:10/1024=9.77mv,其絕對精度為9.77mv/2=4.88mv,相對精度為:0.048%。
3、D/A接口基本
(1)D/A轉換器使將數字量轉換為模擬量。
(2)在集成電路中,通常采用T型網絡實現將數字量轉換為模擬電流,再由運算放大器將模擬電路轉換為模擬電壓。進行D/A轉換實際上需要上面的兩個環節。
(3)D/A轉換器的分類:
A、電壓輸出型:常作為高速D/A轉換器。
B、電流輸出型:一般外接運算放大器使用。
C、乘算型:可用作調制器和使輸入信號數字化地衰減。
(4)D/A轉換器的主要指標:分辨率、建立時間、線性度、轉換精度、溫度系數。
4、鍵盤接口
(1)鍵盤的兩種形式:線性鍵盤和矩陣鍵盤。
(2)識別鍵盤上的閉合鍵通常有兩種方法:行掃描法和行反轉法。
(3)行掃描法是矩陣鍵盤按鍵常用的識別方法,此方法分為兩步進行:
A、識別鍵盤哪一列的鍵被按下:讓所有行線均為低電平,查詢各列線電平是否為低,如果有列線為低,則說明該列有按鍵被按下,否則說明無按鍵按下。
B、如果某列有按鍵按下,識別鍵盤是哪一行按下:逐行置低電平,并置其余各行為高電平,查詢各列的變化,如果列電平變為低電平,則可確定此行此列交叉點處按鍵被按下。
5、顯示接口
LCD的基本原理是,通過給不同的液晶單元供電,控制其光線的通過與否,從而達到顯示的目的。
LCD的光源提供方式有兩種:投射式和反射式。筆記本電腦的LCD顯示器為投射式,屏的背后有一個光源,因此外界環境可以不需要光源。一般微控制器上使用的LCD為反射式,需要外界提供電源,靠反射光來工作。電致發光(EL)是液晶屏提供光源的一種方式。
按照液晶驅動方式分類,常見的LCD可以分為三類:扭轉向列類(TN)、超扭曲向列型(STN)和薄膜晶體管型(TFT)。
市面上出售的LCD有兩種類型:帶有驅動電路的LCD顯示模塊,只要總線方式驅動;沒有驅動電路的LCD顯示器,使用控制器掃描方式。
通常,LCD控制器工作的時候,通過DMA請求總線,直接通過SDRAM控制器讀取SDRAM中指定地址(顯示緩沖區)的數據,此數據經過LCD控制器轉換成液晶屏掃描數據格式,直接驅動液晶顯示器。
VGA接口本質上是一個模擬接口,一般都采用統一的15引腳接口,包括2個NC信號、3根顯示器數據總線、5個GND信號、3個RGB色彩分量、1個行同步信號和1個場同步信號。其色彩分量采用的電平標準為EIA定義的RS343標準。
6、觸摸屏接口
(1)按工作原理分,觸摸屏可以分為:表面聲波屏、電容屏、電阻屏和紅外屏幾種。
(2)觸摸屏的控制采用專業芯片,例如ADS7843。
7、音頻接口
(1)基本原理:麥克風輸入的數據經音頻編解碼器解碼完成A/D轉換,解碼后的音頻數據通過音頻控制器送入DSP或CPU進行相應的處理,然后數據經音頻控制器發送給音頻編碼器,經編碼D/A轉換后由揚聲器輸出。
(2)數字音頻的格式有多種,最常用的是下面三種:
A、采用數字音頻(PCM):是CD或DVD采用的數據格式。其采樣頻率為44.1kHz。精度為16位時,PCM音頻數據速率為1.41Mb/s;精度為32位時為2.42 Mb/s。一張700MB的CD可以保存大約60分鐘的16位PCM數據格式的音樂。
B、MPEG層3音頻(MP3):MP3播放器采用的音頻格式。立體聲MP3數據速率為112kb/s至128kb/s。
C、ATSC數字音頻壓縮標準(AC3):數字TV、HDTV和電影數字音頻編碼標準,立體聲AC3編碼后的數據速率為192kb/s。
(3)IIS是音頻數據的編碼或解碼常用的串行音頻數字接口。IIS總線只處理聲音數據,其他控制信號等則需要單獨傳輸。IIS使用了3根串行總線:數據線SD、字段選擇線WS、時鐘信號線SCK。
(4)當接收方和發送方的數據字段寬度不一樣時,發送方不考慮接收方的數據字段寬度。如果發送方發送的數據字段小于系統字段寬度,就在低位補0;如果發送方的數據寬度大于接收方的寬度,則超過LSB的部分被截斷。字段選擇WS用來選擇左右聲道,WS=0表示選擇左聲道;WS=1表示選擇右聲道。此外,WS能讓接收設備存儲前一個字節,并準備接收下一個字節。
8、串行接口
(1)串行通信是指,使數據一位一位地進行傳輸而實現的通信。與并行通信相比,串行通信具有傳輸線少、成本低等優點,特別適合遠距離傳送;缺點使速度慢。
(2)串行數據傳送有3種基本的通信模式:單工、半雙工、全雙工。
(3)串行通信在信息格式上可以分為2種方式:同步通信和異步通信。
A、異步傳輸:把每個字符當作獨立的信息來傳輸,并按照一固定且預定的時序傳送,但在字符之間卻取決于字符與字符的任意時序。異步通信時,字符是一幀一幀傳送的,每幀字符的傳送靠起始位來同步。一幀數據的各個代碼間間隔是固定的,而相鄰兩幀數據其時間間隔是不固定的。
B、同步傳輸:同步方式不僅在字符之間是同步的,而且在字符與字符之間的時序仍然是同步的,即同步方式是將許多字符******成一字符塊后,在每塊信息之前要加上1~2個同步字符,字符塊之后再加入適當的錯誤檢測數據才傳送出去。
(4)異步通信必須遵循3項規定:
A、字符格式:起始位+數據+校驗位+停止位(檢驗位可無),低位先傳送。
B、波特率:每秒傳送的位數。
C、校驗位:奇偶檢驗。a、奇校驗:要使字符加上校驗位有奇數個“1”。b、偶檢驗:要使字符加上校驗位有偶數個“1”。
(5)RS-232C的電氣特性:負邏輯。
A、在TxD和RxD上:邏輯1為-3V~-15V,邏輯0為3V~15V。
B、在TES、CTS、DTR、DCD等控制線上:信號有效(ON狀態)為3V~15V、信號無效(OFF狀態)為-3V~-15V
(6)TTL標準與RS-232C標準之間的電平轉換利用集成芯片RS232實現。
(7)RS-422串行通信接口
A、RS-422是一種單機發送、多機接收的單向、平衡傳輸規范,傳輸速率可達10Mb/s。
B、RS-422采用差分傳輸方式,也稱做平衡傳輸,使用一對雙絞線。
C、RS-422需要一終端電阻,要求其阻值約等于傳輸電纜的特性阻抗。
(8)RS-485串行總線接口
A、RS-485是在RS-422的基礎上建立的標準,增加了多點、雙向通信能力,通信距離可為幾十米到上千米。
B、RS-485收發器采用平衡發送和差分接收,具有抑制共模干擾的能力。
C、RS-485需要兩個終端電阻。在近距離(300m一下)傳輸可不需要終端電阻。
9、并行接口
并行接口的數據傳輸率比串行接口快8倍,標準并行接口的數據傳輸率為1Mb/s,一般用來連接打印機、掃描儀等,所以又稱打印口。
并行接口可以分為SPP(標準并口)、EPP(增強型并口)和ECP(擴展型并口)。
并行總線分為標準和非標準兩類。常用的并行標準總線有IEEE 488總線和ANSI SCSI總線。MXI總線是一種高性能非標準的通用多用戶并行總線。
10、PCI接口
PCI總線是地址、數據多路復用的高性能32位和64位總線,是微處理器與外圍控制部件、外圍附加板之間的互連機構。
從數據寬度上看,PCI定義了32位數據總線,且可擴展為64位。從總線速度上分,有33MHz和66MHz兩種。
與ISA總線相比,PCI總線的地址總線與數據總線分時復用,支持即插即用、中斷共享等功能。
11、USB接口
(1)USB總線的主要特點:
A、使用簡單,即插即用。
B、每個USB系統中都有主機,這個USB網絡中最多可以連接127個設備。
C、應用范圍廣,支持多個設備同時操作。
D、低成本的電纜和連接器,使用統一的4引腳插頭。
E、較強的糾錯能力。
F、較低的協議開銷帶來了高的總線性能,且適合于低成本外設的開發。
G、支持主機與設備之間的多數據流和多消息流傳輸,且支持同步和異步傳輸類型。
H、總線供電,能為設備提供5V/100mA的供電。
(2)USB系統由3部分來描述:USB主機、USB設備和USB互連。
(3)USB總線支持的數據傳輸率有3種:高速信令位傳輸率為480Mb/s;全速信令位傳輸率為12Mb/s;全速信令位傳輸率為1.5Mb/s。
(4)USB總線電纜有4根線:一對雙絞信號線和一對電源線。
(5)USB是一種查詢總線,由主控制器啟動所有的數據傳輸。USB上所掛接的外設通過由主機調度的、基于令牌的協議來共享USB帶寬。
(6)大部分總線事務涉及3個包的傳輸:
A、令牌包:指示總線上要執行什么事務,欲尋址的USB設備及數據傳送方向。
B、數據包:傳輸數據或指示它沒有數據要傳輸。
C、握手包:指示傳輸是否成功。
(7)主機與設備端點之間的USB數據傳輸模型被稱作管道。管道有兩種類型:流和消息。消息數據具有USB定義的結構,而數據流沒有。
(8)事務調度表允許對某些流管道進行流量控制,在硬件級,通過使用NAK(否認)握手信號來調節數據傳輸率,以防止緩沖區上溢或下溢產生。
(9)USB設備最大的特點是即插即用。
(10)工作原理:USB設備插入USB端點時,主機都通過默認地址0與設備的端點0進行通信。在這個過程中,主機發出一系列試圖得到描述符的標準請求,通過這些請求,主機得到所有感興趣的設備信息,從而知道了設備的情況以及該如何與設備通信。
隨后主機通過發出Set Address請求為設備設置一個唯一的地址。以后主機就通過為設備設置好的地址與設備通信,而不再使用默認地址0。
12、SPI接口
SPI是一個同步協議接口,所有的傳輸都參照一個共同的時鐘,這個同步時鐘有主機產生,接收數據的外設使用時鐘來對串行比特流的接收進行同步化。
在多個設備連接到主機的同一個SPI接口時,主機通過從設備的片選引腳來選擇。
SPI主要使用4個信號:主機輸出/從機輸入(MOSI),主機輸入/從機輸出(MISO)、串行時鐘SCLK和外設片選CS。
主機和外設都包含一個串行移位寄存器,主機通過向它的SPI串行寄存器寫入一個字節來發起一次數據傳輸。寄存器通過MOSI信號線將字節傳送給外設,外設也將自己移位寄存器中的內容通過MISO信號線返回給主機,這樣,兩個移位寄存器中的內容就被交換了。
外設的寫操作和讀操作時同步完成的,因此SPI成為一個很有效的協議。
如果只是進行寫操作,主機只需忽略收到的字節;反過來,如果主機要讀取外設的一個字節,就必須發送一個空字節來引發從機的傳輸。
13、IIC接口
IIC總線是具備總線仲裁和高低速設備同步等功能的高性能多主機總線。
IIC總線上需要兩條線:串行數據線SDA和串行時鐘線SCL。
總線上的每個器件都有唯一的地址以供識別,而且各器件都可以作為一個發送器或者接收器(由器件的功能決定)。
IIC總線有4種操作模式:主發送、主接收、從發送、從接收。
IIC在傳送數據過程有3種類型信號:
A、開始信號:SCL為低電平時,SDA由高向低跳變。
B、結束信號:SCL為低電平時,SDA由低向高跳變。
C、應答信號:接收方在收到8位數據后,在第9個脈沖向發送方發出特點的低電平。
主器件發送一個開始信號后,它還會立即送出一個從地址,來通知將與它進行數據通信的從器件。1個字節的地址包括7位地址信息和1位傳輸方向指示位,如果第7位為0,表示要進行一個寫操作,如果為1,表示要進行一個讀操作。
SDA線上傳輸的每個字節長度都是8位,每次傳輸種字節的數量沒有限制的。在開始信號后面的第一個字節是地址域,之后每個傳輸字節后面都有一個應答位(ACK),傳輸中串行數據的MSB(字節高位)首先發送。
如果數據接收方無法再接收更多的數據,它可以通過將SCL保持低電平來中斷傳輸,這樣可以迫使數據發送方等待,直到SCL被重新釋放。這樣可以達到高低速設備同步。
IIC總線的工作過程:SDA和SCL都是雙向的。空閑的時候,SDA和SCL都是高電平,只有SDA變為低電平,接著SCL再變為低電平,IIC總線的數據傳輸才開始。SDA線上被傳輸的每一位在SCL的上升沿被采樣,該位必須一直保持有效到SCL再次變為低電平,然后SDA就在SCL再次變為高電平之前傳輸下一個位。最后,SCL變回高電平,接著SDA也變為高電平,表示數據傳輸結束。
14、以太網接口
最常用的以太網協議是IEEE802.3標準。
傳輸編碼(06和07年都有):曼徹斯特編碼和差分曼徹斯特編碼。
A、曼徹斯特編碼:每位中間有一個電平跳變,從高到底的跳變表示“0”,從低到高的跳變表示為“1”。
B、差分曼徹斯特編碼:每位中間有一個電平跳變,利用每個碼元開始時有無跳變來表示“0”或“1”,有跳變為“0”,無跳變為“1”。
相比之下,曼徹斯特編碼編碼簡單,差分曼徹斯特編碼提供更好的噪聲抑制性能。
以太網數據傳輸特點:
A、所有數據位的傳輸由低位開始,傳輸的位流時用曼徹斯特編碼。
B、以太網是基于沖突檢測的總線復用方法,由硬件自動執行。
C、傳輸的數據長度,目的地址DA+源地址SA+類型字段TYPE+數據段DATA+填充位PAD,最小為60B,最大為1514B。
D、通常以太網卡可以接收3種地址的數據:廣播地址、多播地址、自己的地址。
E、任何兩個網卡的物理地址都不一樣,是世界上唯一的,網卡地址由專門機構分配。
嵌入式以太網接口有兩種實現方法:
A、嵌入式處理器+網卡芯片(例如:RTL8019AS、CS8900等)
B、帶有以太網接口的處理器。
TCP/IP是一個分層協議,分為:物理層、數據鏈路層、網絡層、傳輸層和應用層。每層實現一個明確的功能,對應一個或幾個傳輸協議,每層相對于它的下層都作為一個獨立的數據包來實現。每層上的協議如下:
A、應用層:BSD套接字。
B、傳輸層:TCP、UDP。
C、網絡層:IP、ARP、ICMP、IGMP
D、數據鏈路層:IEEE802.3 Ethernet MAC
E、物理層:二進制比特流。
ARP(地址解析協議)
A、網絡層用32位的地址來標識不同的主機(即IP地址),而鏈路層使用48位的物理地址(MAC)來標識不同的以太網或令牌網接口。
B、ARP功能:實現從IP地址到對應物理地址的轉換。
ICMP(網絡控制報文協議)
A、IP層用它來與其他主機或路由器交換錯誤報文和其他重要控制信息。
B、ICMP報文是在IP數據包內被傳輸的。
C、網絡診斷工具ping和traceroute其實就是ICMP協議。
IP(網際協議)
A、IP工作在網絡層,是TCP/IP協議族中最為核心的協議。
B、所有的TCP、UDP、ICMP及IGMP數據都以IP數據包格式傳輸。
C、TTL(生存時間字段):指定了IP數據包的生存時間(數據包可以經過的路由器數)。
D、IP提供不可靠、無連接的數據包傳送服務,高效、靈活。a、不可靠:它不能保證數據包能成功到達目的地,任何要求的可靠性必須由上層來提供(如TCP)。如果發生某種錯誤,IP有一個簡單的錯誤處理算法--丟棄該數據包,然后發送ICMP消息報給信源端。b、無連接:IP不維護任何關于后續數據包的狀態信息。每個數據包的處理都是相互獨立的。IP數據包可以不按順序接收,
(10)TCP(傳輸控制協議)
TCP協議是一個面向連接的可靠的傳輸層協議,它為兩臺主機提供高可靠性的端到端數據通信。
(11)UDP(用戶數據包協議)
UDP協議是一種無連接不可靠的傳輸層協議,它不保證數據包能到達目的地,可靠性有應用層來提供。UDP協議開銷少,和TCP相比更適合于應用在低端的嵌入式領域中。
(12)端口:TCP和UDP采用16位端口號來識別上層的用戶,即應用層協議,例如FTP服務的TCP端口號都是21,Telnet服務的TCP端口號都是23,TFTP服務的UDP端口號都是69。
15、CAN總線接口
CAN(Control Area Network,控制器局域網)總線是一種多主方式的串行通信總線,是國際上應用最廣泛的現場總線之一,最初被用于汽車環境中的電子控制網絡。一個CAN總線構成的單一網絡中,理想情況下可以掛接任意多個節點,實際應用中節點數據受網絡硬件的電氣特性所限制。
總線信號使用差分電壓傳送。兩條信號線被稱為CAN_H和CAN_L,靜態是均為2.5V左右,此時狀態表示邏輯1,也可以叫做“隱性”。用CAN_H比CAN_L高表示邏輯0,稱為“顯性”,此時,通常電壓值為CAN_H=3.5V和CAN_L=1.5V。
當“顯性”和“隱性”位同時發送的時候,最后總線數值將為“顯性”這種特性為CAN總線的仲裁奠定了基礎。
CAN總線的一個位時間可以分成4個部分:同步段、傳播時間段、相位緩沖段1和相位緩沖段2。
CAN總線的數據幀有兩種格式:標準格式和擴展格式。包括:幀起始、仲裁場、控制場、數據場、CRC場、ACK場和幀結束。
CAN總線硬件接口包括:CAN總線控制器和CAN收發器。CAN控制器主要完成時序邏輯轉換等工作,例如菲利普的SJA1000。CAN收發器是CAN總線的物理層芯片,實現TTL電平到CAN總線電平特性的轉換,例如TJA1050。
16、xDSL接口
xDSL(數字用戶線路)技術是,在現有用戶電話線兩側同時接入專用的DSL調制解調設備,在用戶線上利用數字數字信號高頻帶寬較寬的特性直接采用數字信號傳輸,省去中間的A/D轉換,突破了模擬信號傳輸極限速率為56KB/s的閑置。
DSL技術主要分為對稱和非對稱兩大類。
對成xDSL更適合于企業點對點連接應用,例如文件傳輸、視頻會議等收發數據量大致相同的工作。
ASDL是近年發展的另一種寬帶接入技術,是利用雙絞銅線向用戶提供兩個方向上速率不對稱的寬帶信息業務。
ADSL在一對電話線上同時傳送一路高速下行數據、一路較低速率上行數據、一路模擬電話。各信號之間采用頻分復用方式占用不同頻帶,低頻段傳送話音;中間窄頻帶傳送上行信道數據及控制信息;其余高頻段傳送下行信道數據、圖像或高速數據。
17、WLAN接口
WLAN(Wireless Local Area Network)是利用無線通信技術在一定的局部范圍內建立的,是計算機網絡與無線通信技術相結合的產物,它以無線多址通道作為傳輸媒介,提供有線局域網的功能。
WLAN的標準:主要是針對物理層和媒質訪問控制層(MAC層),涉及到所有使用的無線頻率范圍、控制接口通信協議等技術規范與技術標準。
A、IEEE 802.11:定義了物理層和MAC層規范,工作在2.4~2.4835GHz頻段,最高速率為2Mb/s,是IEEE最初制定的一個無線局域網標準。
B、IEEE 802.11b:工作在2.4~2.4835GHz頻段,最高速率為11Mb/s,傳輸距離50~150inch。采用點對點模式和基本模式兩種運行模式。在數據傳輸速率方面可以根據實際情況在11Mb/s、5.5Mb/s、2 Mb/s、1 Mb/s的不同速率間自動切換。
C、IEEE 802.11a:工作在5.15~8.825GHz頻段,最高速率為54Mb/s/72Mb/s,傳輸距離10~100m。
D、IEEE 802.11g:混合標準,擁有EEE 802.11a的傳輸速率,安全性較EEE 802.11b好,采用兩種調制方式,做到與EEE 802.11a和EEE 802.11b兼容。
WLAN有兩種網絡類型:對等網絡和基礎機構網絡。
18、藍牙接口
藍牙技術的目的:使特定的移動電話、便鞋式電腦以及各種便攜通信設備的主機之間近距離內實現無縫的資源共享。
藍牙技術的實質內容是要建立通用的無線空中接口及其控制軟件的公開標準。其工作頻段為全球通用的2.4GHz ISM(即工業、科學、醫學)頻段,其數據傳輸速率為1Mb/s,采用時分雙工方案來實現全雙工傳輸,其理想的連接范圍為10cm~10m。
藍牙基帶協議是電路交換和分組交換的結合。
藍牙技術特點:
A、傳輸距離短,工作距離在10m以內。
B、采用跳頻擴頻技術。
C、采用時分復用多路訪問技術,有效地避免了“碰撞”和“隱藏終端”等問題。
D、網絡技術。
E、語言支持。
F、糾錯技術,其采用的是FEC(前向糾錯)方案。
藍牙接口由3大單元組成:無線單元、基帶單元、鏈路管理與控制單元。
19、1394 接口
1394作為一種標準總線,可以在不同的工業設備之間架起一座溝通的橋梁,在一條總線上可以接入63個設備。
IEEE 1394的特點:
A、支持多種總線速度,適應不同應用要求。
B、即插即用,支持熱插拔。
C、支持同步和異步兩種傳輸方式。
D、支持點到點通信模式,IEEE 1394是多主總線。
E、遵循ANSI IEEE 1212控制及狀態寄存器(CSR)標準,定義了64位的地址空間,可尋址1024條總線的63個節點,每個節點可包含256TB的內存空間。
F、支持較遠距離的傳輸。
G、支持公平仲裁原則,為每一種傳輸方式保證足夠的傳輸帶寬。
H、六線電纜具有電源線,可傳輸8~40V的直流電壓。
IEEE 1394的協議棧由3層組成:物理層、鏈路層和事務層,例外還有一個管理層。物理層和鏈路層由硬件構成,而事務層主要由軟件實現。
A、物理層提供IEEE 1394的電氣和機械接口,功能是重組字節流并將它們發送到目的節點上去。
B、鏈路層提供了給事務層確認的數據服務,包括:尋址、數據組幀和數據校驗。
C、事務層為應用提供服務。
D、管理層定義了一個管理節點所使用的所有協議、服務以及進程。
20、電源接口
DC-DC轉換器有三種類型:
A、線性穩壓器:產生較輸入電壓低的電壓。
B、開關穩壓器:能升高電壓、降低電壓或翻轉輸入電壓。
C、充電泵:可以升高、降低或翻轉輸入電壓,但電流驅動能力有限。
任何變壓器的轉換過程都不具有100%的效率,穩壓器本省也使用電流(靜態電流),這個電流來自輸入電流。靜態電流越大,穩壓器功耗越大。
線性穩壓器輸入輸出使用退耦電容來過濾,電容除了有助于平穩電壓以外,還有利于去除電源中的瞬間短時脈沖波形干擾。
電壓與功耗之間的平方關系意味著理想高效的方法是在要求較低電壓的較低時鐘速率上執行代碼,而不是先以最高的時鐘速率執行代碼然后再轉為空閑休眠。
電源通常被認為是整個系統的“心臟”,絕大多數電子設備50%~80%的節能潛力在于電源系統,研制開發新型開關電源是節能的主要舉措之一。
降低功耗的設計技術:
(1)采用低功耗器件,例如選用CMOS電路芯片。 (2)采用高集成度專用器件,外部設備的選擇也要盡量支持低功耗設計。 (3)動態調整處理器的時鐘頻率和電壓,在允許的情況下盡量使用低頻率器件。 (4)利用“節電”工作方式。 (5)合理處理器件空余引腳:a、大多數數字電路的輸出端在輸出低電平時,其功耗遠遠大于輸出高電平時的功耗,設計時應該注意控制低電平的輸出時間,閑置時使其處于高電平輸出狀態。b、多余的非門、與非門的輸入端應接低電平,多余的與門、或門的輸入端應接高電平。c、ROM或RAM及其他有片選信號的器件,不要將“片選”引腳直接接地,避免器件長。F、實現電源管理,設計外部器件電源控制電路,控制“耗電大戶”的供電情況。
-
嵌入式
+關注
關注
5090文章
19173瀏覽量
306847 -
數據
+關注
關注
8文章
7133瀏覽量
89376 -
以太網接口
+關注
關注
0文章
147瀏覽量
17138
原文標題:嵌入式系統入門基礎知識分析(二)
文章出處:【微信號:嵌入式開發愛好者,微信公眾號:嵌入式開發愛好者】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論