什么是窄脈沖現象
IGBT作為一種功率開關,從門級信號到器件開關過程需要一定反應時間,就像生活中開關門太快容易擠壓手一樣,過短的開通脈沖可能會引起過高的電壓尖峰或者高頻震蕩問題。這種現象隨著IGBT被高頻PWM調制信號驅動時,時常會無奈發生,占空比越小越容易輸出窄脈沖,且IGBT反并聯續流二極管FWD在硬開關續流時反向恢復特性也會變快。以1700V/1000A IGBT4 E4來看,規格書中在結溫Tvj.op=150℃時,開關時間tdon=0.6us,tr=0.12us和tdoff=1.3us, tf=0.59us,窄脈沖寬度不能小于規格書開關時間之和。在實際應用中,由于負載特性的不同像光伏和儲能絕大數都時功率因數為+/-1,其窄脈沖會在靠近電流零點附近出現,像無功發生器SVG,有源濾波APF功率因數為0,其窄脈沖會出現在最大負載電流附近,實際應用中電流過零點附近更容易出現輸出波形上的高頻振蕩,EMI問題隨之而來。
窄脈沖現象的原因
從半導體基本原理上看,窄脈沖現象產生的主要原因是由于IGBT 或FWD剛開始開通時,不會立即充滿載流子,當在載流子擴散時關斷IGBT或二極管芯片,與載流子完全充滿后關斷相比,di/dt可能會增加。相應地在換流雜散電感下會產生更高的IGBT關斷過電壓,也可能會引起二極管反向恢復電流突變,進而引起snap-off現象。但該現象與IGBT和FWD芯片技術、器件電壓和電流都緊密相關。
先要從經典的雙脈沖示意圖出發,下圖為IGBT門極驅動電壓、電流和電壓的開關邏輯,從IGBT的驅動邏輯看,可以分為窄脈沖關斷時間toff,實際是對應二極管FWD的正向導通時間ton,其對反向恢復峰值電流、恢復速度都有很大影響,如圖中A點,反向恢復最大峰值功率不能超過FWD SOA的限制;和窄脈沖開通時間ton,這個對IGBT關斷過程影響比較大,如圖中B點,主要是IGBT關斷電壓尖峰和電流拖尾振蕩。
圖1.驅動雙脈沖
但太窄脈沖器件開通關斷會引起什么問題呢?實際應用中那最小脈沖寬度限制是多少比較合理呢?這些問題用理論和公式很難推導出萬能公式來直接計算,理論分析和研究也比較少。從實際測試波形和結果來看圖說話,分析和總結應用的特點和共性,更有利于幫助大家認識這種現象,進而優化設計避免問題出現。
IGBT窄脈沖開通
IGBT做為主動開關,用實際案例來看圖說話這個現象更有說服力,來點有料干貨。
以大功率模塊IGBT4 PrimePACK FF1000R17IE4為測試對象,在Vce=800V,Ic=500A,Rg=1.7Ω Vge=+/-15V,Ta=25℃條件下ton變化時器件關斷特性,紅色為集電極Ic,藍色為IGBT兩端電壓Vce,綠色為驅動電壓Vge。脈沖ton從2us減小到1.3us看這個電壓尖峰Vcep的變化,下圖直觀的給出測試波形漸進看變化過程,尤其圈中所示。
可左右滑動進行查看
當ton<=1.3us時,IGBT此時已經處于線性區,沒有完全導通,此時開關損耗會很大,關斷電流Ic出現突變引起大di/dt,IGBT關斷會出現高頻振蕩。
改變電流Ic,在Vce維度看看ton引起的特性變化。左右圖為分別在相同Vce=800V、1000V條件下,不同電流Ic時電壓尖峰Vce_peak。從各自測試結果看,ton在小電流時,對電壓尖峰Vce_peak的影響比較?。划旉P斷電流增加話,窄脈沖關斷時容易出現電流突變,隨之引起高電壓尖峰。以左右圖為坐標對比,ton在當Vce和電流Ic越高時對關斷過程影響越大,更容易出現電流突變現象。從測試看這個例子FF1000R17IE4,最小脈沖ton最為合理時間不要小于3us。
可左右滑動進行查看
大電流模塊和小電流模塊在這個問題上表現有差異嗎?以FF450R12ME3中等功率模塊為例,下圖為不同測試電流Ic在ton變化時候的電壓過沖。
類似結果,小電流條件低于1/10*Ic下ton對關斷電壓過沖影響可以忽略。當電流增加到額定電流450A,甚至2*Ic電流900A,電壓過沖隨ton寬度變化就非常明顯。為了測試極端條件下工況的特性表現,3倍額定電流為1350A,電壓尖峰已經超過阻斷電壓,被芯片嵌在一定電壓水平,與ton寬度無關。
下圖是在Vce=700V,Ic=900A時ton=1us和20us的對比測試波形。從實際測試看,該模塊脈沖寬度在ton=1us已經開始振蕩,電壓尖峰Vcep比ton=20us要高出80V。因此,建議不要最小脈沖時間不要小于1us。
可左右滑動進行查看
FWD窄脈沖開通
FWD窄脈沖開通
在半橋電路中,IGBT關斷脈沖toff對應的就是FWD開通時間ton,下圖可以看出當FWD開通時間小于2us時候,在額定電流450A時,FWD反向電流峰值會增大。當toff大于2us時,FWD反向恢復峰值電流基本不變。
用IGBT5 PrimePACK3+FF1800R17IP5來觀察大功率二極管特性,尤其小電流條件下隨ton變化,下面一排展示在VR=900V,1200V條件下,在小電流IF=20A條件下兩個波形的直接對比,很明顯在ton=3us時候,示波器已經hold不住這個高頻振蕩的幅值。這也引證在大功率器件應用中負載電流過零點的高頻振蕩和FWD短時反向恢復過程有緊密關系。
可左右滑動進行查看
直觀波形看完后,用實際數據來進一步量化對比這個過程,二極管的dv/dt和di/dt隨toff變化,越小FWD導通時間,其反向特性會變快。當FWD兩端的VR越高時,隨著二極管導通脈沖變窄,其二極管反向恢復速度會加快,具體看數據在ton=3us條件下:
VR=1200V時:
dv/dt=44.3kV/us;di/dt=14kA/us;
VR=900V時:
dv/dt=32.1kV/us;di/dt=12.9kA/us。
鑒于ton=3us時候,波形高頻振蕩更加劇烈, 并超出了二極管安全工作區,從二極管FWD角度看導通時間不要小于3us。
在高壓3.3kV IGBT以上規格書中已經對FWD正向導通時間ton進行了明確定義和需求,以2400A/3.3kV HE3為例如下,其已經明確給出最小二極管導通時間10us作為限制,這主要是大功率應用中系統回路雜散電感比較大,開關時間比較長,在器件開通過程中瞬時容易超過二極管最大允許功耗PRQM。
從模塊實際測試波形和結果看,看圖說話有一些基本總結:
1
脈沖寬度ton對IGBT關斷小電流(大約1/10*Ic)時影響較小,實際可以忽略。
2
IGBT關斷大電流時候對脈沖寬度ton有一定依賴性,ton越小電壓尖峰V越高,且關斷電流拖尾會突變,發生高頻振蕩。
3
FWD特性隨導通時間變短其反向恢復過程會加速,越短FWD導通時間會引起很大dv/dt和di/dt,尤其小電流條件下。另外,高壓IGBT都給出明確最小二極管導通時間tonmin=10us。
在低壓IGBT應用中比較難對最小允許開通窄脈沖去定義和計算,推薦精確地測量來調整去評估IGBT和FWD。文中的實際測試波形已經給出了一些參考最小時間,起到拋磚引玉的作用。
-
IGBT
+關注
關注
1268文章
3830瀏覽量
249694
發布評論請先 登錄
相關推薦
評論