依賴安裝
準備訓練數據
訓練詳細流程和踩坑
參數量估計
訓練顯存占用估計
2卡數據并行
2卡模型并行
0x0. 前言
本文基于DeepSpeedExamples倉庫中給出的Megatron相關例子探索一下訓練GPT2模型的流程。主要包含3個部分,第一個部分是基于原始的Megatron如何訓練GPT2模型,第二個部分是如何結合DeepSpeed的特性進行訓練Megatron GPT2,由于篇幅原因這篇文章只寫了第一部分,主要是非常細致的記錄了跑起來Megatron GPT2訓練流程碰到的一些問題和如何解決的。本文主要以這里的codebase展開寫作。
0x1. Megatron使用單卡訓練GPT2
首先閱讀 https://github.com/microsoft/DeepSpeedExamples/tree/bdf8e59aede8c8e0577e8d4d557298ca8515268f/Megatron-LM 這里的README。這里不關注BERT的部分,目的是把GPT2的訓練和推理跑起來。
首先提到,Megatron是一款大型且強大的Transformer,這個代碼庫用于進行大的Transformer語言模型的持續研究。目前,Megatron支持GPT2和BERT的模型并行、多節點訓練,并采用混合精度。Megatron的代碼庫能夠使用512個GPU進行8路模型和64路數據并行來高效地訓練一個72層、83億參數的GPT2語言模型。作者發現,更大的語言模型(指的是前面的83億參數的GPT2)能夠在僅5個訓練epoch內超越當前GPT2-1.5B wikitext perplexities。
依賴安裝
首先進入到Megatron-LM目錄,安裝一下依賴,pip install -r requirements.txt,注意在requirements.txt里面依賴了TensorFlow,這個是和BERT訓練相關,我這里不關心,就不安裝TensorFlow了。requiresment.txt的內容如下:
nltk>=3.4 numpy>=1.15.4 pandas>=0.24.0 sentencepiece>=0.1.8 # tensorflow>=1.12.0 boto3==1.11.11 regex==2020.1.8
安裝的時候會報錯:
ERROR: Could not find a version that satisfies the requirement boto3==1.11.11 (from versions: none) ERROR: No matching distribution found for boto3==1.11.11
我直接使用 pip install boto3 安裝了個最新版本。
接著按照教程,執行bash scripts/pretrain_gpt2.sh。這里有一個PyTorch的報錯:
ModuleNotFoundError: No module named 'torch._six'
這個錯誤是由于PyTorch版本變化產生的,搜索了一下,發現只需要把from torch._six import inf 這行代碼改成 from torch import inf 就可以了。繼續執行,報錯為:AssertionError: make sure to set PATH for wikipedia data_utils/corpora.py 。這是因為在 scripts/pretrain_gpt2.sh 里面指定了訓練的數據集為 wikipedia ,所以需要在 DeepSpeedExamples/Megatron-LM/data_utils/corpora.py 這里的 PATH = 'data/wikipedia/wikidump_lines.json' 指定我們本地下載的 wikipedia 數據路徑。
準備訓練數據
下載數據的時候發現這個 wikipedia 數據實在太大了, 所以改用 webtext 數據集,關于這個數據集 Megatron 的README介紹如下:
“我們”利用公開可用的OpenWebText(https://github.com/eukaryote31/openwebtext)庫,該庫由jcpeterson(https://github.com/jcpeterson/openwebtext)和eukaryote31(https://github.com/eukaryote31/openwebtext)共同開發,用于下載URL。然后,我們根據我們在openwebtext目錄中描述的過程對所有下載的內容進行了過濾、清理和去重。對于截至2018年10月的Reddit URL對應的內容,我們得到了約37GB的內容。37G對于跑訓練來說還是太大了,所以我只下載了幾十個url中的第一個1url文件。
然后把這個文件復制到Megatron-LM的openwebtxt目錄下:
在這里插入圖片描述
接下來按照 openwebtext 的 README 開始執行。
pipinstallftfylangdetectnumpytorchpandasnltksentencepieceboto3tqdmregexbs4newspaper3khtmlmintldextract gitclonehttps://github.com/mattilyra/LSH cdLSH pythonsetup.pyinstall
安裝 LSH 碰到了兩個 Python 版本不兼容引起的問題:
lsh/cMinhash.cpp21: error: ‘PyThreadState’ {aka ‘struct _ts’} has no member named ‘exc_type’; did you mean ‘curexc_type’? 19292 | *type = tstate->exc_type;
可以將exc_type替換為curexc_type來解決這個問題。
lsh/cMinhash.cpp26: error: ‘PyTypeObject’ {aka ‘struct _typeobject’} has no member named ‘tp_print’ 17704 | __pyx_type___pyx_array.tp_print = 0;
可以將tp_print替換為tp_vectorcall_offset來解決這個問題。
接下來,執行去重url的命令:
python3blacklist_urls.pyRS_2011-01.bz2.deduped.txtclean_urls.txt
我發現執行這個命令之后clean_urls.txt是空的。看了下代碼發現這個腳本要求去重的url文件必須在一個目錄下,并且把這個目錄的路徑傳遞給腳本。
在這里插入圖片描述
因此,在當前文件夾下新建一個 urls 目錄,把剛才的url文件放進去。如下所示:
在這里插入圖片描述
然后執行:python3 blacklist_urls.py urls clean_urls.txt 就可以完成去重了。接下來使用https://github.com/eukaryote31/openwebtext/blob/master/download.py 下載去重后的 url 對應的文本。
在這里插入圖片描述
這里要全部下載完需要的時間很長,我只下載50條url對應的數據做一個演示作用。這里要把下載的每條url對應的數據保存為json文件需要修改一下download.py里面的--sqlite_meta和--save_uncompressed默認值,分別改成False和True,這樣執行python3 openwebtext/download.py clean_urls.txt 之后就會生成一個scraped文件夾,每個url下載的文本就保存在data子文件夾下:
然后我們使用下面的腳本(merge_jsons.py)來把文件夾中的所有txt合并成一個json文件,其中每一行都作為一個text字段對應的內容:
importglob importsys importjson importargparse if__name__=='__main__': parser=argparse.ArgumentParser() parser.add_argument("--data_path",type=str,default=".", help="pathwhereallthejsonfilesarelocated") parser.add_argument("--output_file",type=str,default="merged_output.json", help="filenamewherethemergedjsonshouldgo") args=parser.parse_args() data_path=args.data_path out_file=args.output_file text_files=glob.glob(data_path+'/*.txt') counter=0 withopen(out_file,'w')asoutfile: forfnameintext_files: counter+=1 ifcounter%1024==0: print("Mergingat",counter,flush=True) withopen(fname,'r')asinfile: forrowininfile: tmp={} tmp['text']=row outfile.write(json.dumps(tmp)) outfile.write(' ') print("Mergedfile",out_file,flush=True)
執行這個腳本獲得merged_output.json:python3 merge_jsons.py --data_pathDeepSpeedExamples/Megatron-LM/openwebtext/scraped/data。
接著,我們在openwebtext文件夾下執行一下cleanup_dataset.py來把tokens數量少于128的文本都刪掉。python3 cleanup_dataset.py merged_output.json merged_cleand.json。
訓練詳細流程和踩坑
數據準備好之后,我們修改一下DeepSpeedExamples/Megatron-LM/scripts/pretrain_gpt2.sh下面的--train-data為webtext。此外將DeepSpeedExamples/Megatron-LM/data_utils/corpora.py中webtext類的path設置為我們剛才獲得的merged_cleand.json所在的路徑。
此外,由于我這里只用了幾十條數據來做訓練過程的演示,這里還需要改一下DeepSpeedExamples/Megatron-LM/scripts/pretrain_gpt2.sh下面的--split參數,將其改成400,300,300,也就是訓練,測試,驗證集的數據比例為43,這樣才可以避免把測試集的數量設成0。
接下來就可以使用bash scripts/pretrain_gpt2.sh來啟動訓練了。給一些訓練日志出來:
Setting ds_accelerator to cuda (auto detect) using world size: 1 and model-parallel size: 1 > using dynamic loss scaling > initializing model parallel with size 1 Pretrain GPT2 model arguments: pretrained_bert .............. False attention_dropout ............ 0.1 num_attention_heads .......... 16 hidden_size .................. 1024 intermediate_size ............ None num_layers ................... 24 layernorm_epsilon ............ 1e-05 hidden_dropout ............... 0.1 max_position_embeddings ...... 1024 vocab_size ................... 30522 deep_init .................... False make_vocab_size_divisible_by . 128 cpu_optimizer ................ False cpu_torch_adam ............... False fp16 ......................... True fp32_embedding ............... False fp32_layernorm ............... False fp32_tokentypes .............. False fp32_allreduce ............... False hysteresis ................... 2 loss_scale ................... None loss_scale_window ............ 1000 min_scale .................... 1 batch_size ................... 8 weight_decay ................. 0.01 checkpoint_activations ....... True checkpoint_num_layers ........ 1 deepspeed_activation_checkpointing False clip_grad .................... 1.0 train_iters .................. 320000 log_interval ................. 100 exit_interval ................ None seed ......................... 1234 reset_position_ids ........... False reset_attention_mask ......... False lr_decay_iters ............... None lr_decay_style ............... cosine lr ........................... 0.00015 warmup ....................... 0.01 save ......................... checkpoints/gpt2_345m save_interval ................ 5000 no_save_optim ................ False no_save_rng .................. False load ......................... checkpoints/gpt2_345m no_load_optim ................ False no_load_rng .................. False finetune ..................... False resume_dataloader ............ True distributed_backend .......... nccl local_rank ................... None eval_batch_size .............. None eval_iters ................... 100 eval_interval ................ 1000 eval_seq_length .............. None eval_max_preds_per_seq ....... None overlapping_eval ............. 32 cloze_eval ................... False eval_hf ...................... False load_openai .................. False temperature .................. 1.0 top_p ........................ 0.0 top_k ........................ 0 out_seq_length ............... 256 model_parallel_size .......... 1 shuffle ...................... False train_data ................... ['webtext'] use_npy_data_loader .......... False train_data_path .............. val_data_path ................ test_data_path ............... input_data_sizes_file ........ sizes.txt delim ........................ , text_key ..................... sentence eval_text_key ................ None valid_data ................... None split ........................ 400,300,300 test_data .................... None lazy_loader .................. True loose_json ................... False presplit_sentences ........... False num_workers .................. 2 tokenizer_model_type ......... bert-large-uncased tokenizer_path ............... tokenizer.model tokenizer_type ............... GPT2BPETokenizer cache_dir .................... cache use_tfrecords ................ False seq_length ................... 1024 max_preds_per_seq ............ None deepspeed .................... False deepspeed_config ............. None deepscale .................... False deepscale_config ............. None deepspeed_mpi ................ False cuda ......................... True rank ......................... 0 world_size ................... 1 dynamic_loss_scale ........... True > initializing model parallel cuda seeds on global rank 0, model parallel rank 0, and data parallel rank 0 with model parallel seed: 3952 and data parallel seed: 1234 configuring data > padded vocab (size: 50257) with 47 dummy tokens (new size: 50304) > found end-of-document token: 50256 building GPT2 model ... > number of parameters on model parallel rank 0: 354871296 Optimizer = FusedAdam learning rate decaying cosine WARNING: could not find the metadata file checkpoints/gpt2_345m/latest_checkpointed_iteration.txt will not load any checkpoints and will start from random Partition Activations False and Correctness Check False iteration 100/ 320000 | elapsed time per iteration (ms): 963.3 | learning rate 3.937E-06 | lm loss 8.995377E+00 | loss scale 131072.0 | /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/cuda/memory.py FutureWarning: torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved warnings.warn( /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/cuda/memory.py FutureWarning: torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved warnings.warn( after 100 iterations memory (MB) | allocated: 6784.88427734375 | max allocated: 11927.470703125 | cached: 13826.0 | max cached: 13826.0 time (ms) | forward: 276.11 | backward: 672.99 | allreduce: 13.96 | optimizer: 14.00 | batch generator: 5.22 | data loader: 4.53 iteration 200/ 320000 | elapsed time per iteration (ms): 950.6 | learning rate 8.625E-06 | lm loss 3.041360E+00 | loss scale 131072.0 | time (ms) | forward: 259.24 | backward: 674.56 | allreduce: 13.45 | optimizer: 16.63 | batch generator: 0.78 | data loader: 0.14
從 nvidia-smi 的截圖里也可以看到megatron的訓練正在卡0運行:
在訓練的時候可能會發生下面的 StopIteration 錯誤:
time (ms) | forward: 259.07 | backward: 671.87 | allreduce: 13.03 | optimizer: 16.64 | batch generator: 0.76 | data loader: 0.13 ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/pretrain_gpt2.py:713 in│ │ │ │ 710 │ │ 711 │ │ 712 if __name__ == "__main__": │ │ ? 713 │ main() │ │ 714 │ │ │ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/pretrain_gpt2.py:686 in main │ │ │ │ 683 │ iteration = 0 │ │ 684 │ if args.train_iters > 0: │ │ 685 │ │ if args.do_train: │ │ ? 686 │ │ │ iteration, skipped = train(model, optimizer, │ │ 687 │ │ │ │ │ │ │ │ │ lr_scheduler, │ │ 688 │ │ │ │ │ │ │ │ │ train_data_iterator, │ │ 689 │ │ │ │ │ │ │ │ │ val_data_iterator, │ │ │ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/pretrain_gpt2.py:415 in train │ │ │ │ 412 │ report_memory_flag = True │ │ 413 │ while iteration < args.train_iters: │ │ 414 │ │ │ │ ? 415 │ │ lm_loss, skipped_iter = train_step(train_data_iterator, │ │ 416 │ │ │ │ │ │ │ │ │ │ model, │ │ 417 │ │ │ │ │ │ │ │ │ │ optimizer, │ │ 418 │ │ │ │ │ │ │ │ │ │ lr_scheduler, │ │ │ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/pretrain_gpt2.py:369 in train_step │ │ │ │ 366 │ │ │ 367 │ # Forward model for one step. │ │ 368 │ timers('forward').start() │ │ ? 369 │ lm_loss = forward_step(data_iterator, model, args, timers) │ │ 370 │ timers('forward').stop() │ │ 371 │ │ │ 372 │ #print_rank_0("loss is {}".format(lm_loss)) │ │ │ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/pretrain_gpt2.py:286 in forward_step │ │ │ │ 283 │ │ │ 284 │ # Get the batch. │ │ 285 │ timers('batch generator').start() │ │ ? 286 │ tokens, labels, loss_mask, attention_mask, position_ids = get_batch( │ │ 287 │ │ data_iterator, args, timers) │ │ 288 │ timers('batch generator').stop() │ │ 289 │ │ │ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/pretrain_gpt2.py:257 in get_batch │ │ │ │ 254 │ # Broadcast data. │ │ 255 │ timers('data loader').start() │ │ 256 │ if data_iterator is not None: │ │ ? 257 │ │ data = next(data_iterator) │ │ 258 │ else: │ │ 259 │ │ data = None │ │ 260 │ timers('data loader').stop() │ │ │ │ /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/utils/data/dataloader.p │ │ y:633 in __next__ │ │ │ │ 630 │ │ │ if self._sampler_iter is None: │ │ 631 │ │ │ │ # TODO(https://github.com/pytorch/pytorch/issues/76750) │ │ 632 │ │ │ │ self._reset() # type: ignore[call-arg] │ │ ? 633 │ │ │ data = self._next_data() │ │ 634 │ │ │ self._num_yielded += 1 │ │ 635 │ │ │ if self._dataset_kind == _DatasetKind.Iterable and │ │ 636 │ │ │ │ │ self._IterableDataset_len_called is not None and │ │ │ │ /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/utils/data/dataloader.p │ │ y:1318 in _next_data │ │ │ │ 1315 │ │ │ │ # no valid `self._rcvd_idx` is found (i.e., didn't break) │ │ 1316 │ │ │ │ if not self._persistent_workers: │ │ 1317 │ │ │ │ │ self._shutdown_workers() │ │ ? 1318 │ │ │ │ raise StopIteration │ │ 1319 │ │ │ │ │ 1320 │ │ │ # Now `self._rcvd_idx` is the batch index we want to fetch │ │ 1321 │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ StopIteration
不用擔心,這個錯誤表示的是數據量不夠訓練這么多個iter,這個發生的原因是因為在構造dataloader的時候使用了torch.utils.data.SequentialSampler對dataset進行采樣,這個采樣器是根據dataset的長度來采樣,所以無法和args.train_iters關聯起來,導致訓練到很多iter之后數據讀完了就拋出StopIteration錯誤了。
我們調整一下腳本,把iter數改成600,并且把checkpoint的保存間隔設置為500,保證megatron可以存下一個checkpoint。再次運行腳本:
在這里插入圖片描述
0x2. Megatron使用單卡預測訓練好的GPT2模型
修改DeepSpeedExamples/Megatron-LM/scripts/generate_text.sh這里的CHECKPOINT_PATH為我們訓練出來的模型路徑,我們這里改成DeepSpeedExamples/Megatron-LM/checkpoints/gpt2_345m,然后在Megatron的根目錄執行一下:bash scripts/generate_text.sh。但報錯了:
Setting ds_accelerator to cuda (auto detect) Generate Samples WARNING: No training data specified using world size: 1 and model-parallel size: 1 > using dynamic loss scaling > initializing model parallel with size 1 > initializing model parallel cuda seeds on global rank 0, model parallel rank 0, and data parallel rank 0 with model parallel seed: 3952 and data parallel seed: 1234 prepare tokenizer done building GPT2 model ... > number of parameters on model parallel rank 0: 354823168 global rank 0 is loading checkpoint /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/checkpoints/gpt2_345m/iter_0000600/mp_rank_00/model_optim_rng.pt ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/generate_samples.py:277 in│ │ │ │ 274 │ │ 275 │ │ 276 if __name__ == "__main__": │ │ ? 277 │ main() │ │ 278 │ │ 279 │ │ 280 │ │ │ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/generate_samples.py:267 in main │ │ │ │ 264 │ tokenizer = prepare_tokenizer(args) │ │ 265 │ │ │ 266 │ # Model, optimizer, and learning rate. │ │ ? 267 │ model = setup_model(args) │ │ 268 │ │ │ 269 │ #setting default batch size to 1 │ │ 270 │ args.batch_size = 1 │ │ │ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/generate_samples.py:80 in setup_model │ │ │ │ 77 │ model = get_model(args) │ │ 78 │ │ │ 79 │ if args.load is not None: │ │ ? 80 │ │ _ = load_checkpoint( │ │ 81 │ │ │ model, None, None, args) │ │ 82 │ │ │ 83 │ return model │ │ │ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/utils.py:305 in load_checkpoint │ │ │ │ 302 │ │ │ │ 303 │ │ # Model. │ │ 304 │ │ try: │ │ ? 305 │ │ │ model.load_state_dict(sd['model']) │ │ 306 │ │ except KeyError: │ │ 307 │ │ │ print_rank_0('A metadata file exists but unable to load model ' │ │ 308 │ │ │ │ │ │ 'from checkpoint {}, exiting'.format(checkpoint_name)) │ │ │ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/model/distributed.py:90 in load_state_dict │ │ │ │ 87 │ │ return sd │ │ 88 │ │ │ 89 │ def load_state_dict(self, state_dict, strict=True): │ │ ? 90 │ │ self.module.load_state_dict(state_dict, strict=strict) │ │ 91 │ │ │ 92 │ ''' │ │ 93 │ def _sync_buffers(self): │ │ │ │ /home/zhangxiaoyu/DeepSpeedExamples/Megatron-LM/fp16/fp16.py:71 in load_state_dict │ │ │ │ 68 │ │ return self.module.state_dict(destination, prefix, keep_vars) │ │ 69 │ │ │ 70 │ def load_state_dict(self, state_dict, strict=True): │ │ ? 71 │ │ self.module.load_state_dict(state_dict, strict=strict) │ │ 72 │ │ 73 # TODO: Update overflow check + downscale to use Carl's fused kernel. │ │ 74 class FP16_Optimizer(object): │ │ │ │ /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/nn/modules/module.py:20 │ │ 41 in load_state_dict │ │ │ │ 2038 │ │ │ │ │ │ ', '.join('"{}"'.format(k) for k in missing_keys))) │ │ 2039 │ │ │ │ 2040 │ │ if len(error_msgs) > 0: │ │ ? 2041 │ │ │ raise RuntimeError('Error(s) in loading state_dict for {}: {}'.format( │ │ 2042 │ │ │ │ │ │ │ self.__class__.__name__, " ".join(error_msgs))) │ │ 2043 │ │ return _IncompatibleKeys(missing_keys, unexpected_keys) │ │ 2044 │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ RuntimeError: Error(s) in loading state_dict for GPT2Model: size mismatch for word_embeddings.weight: copying a param with shape torch.Size([50304, 1024]) from checkpoint, the shape in current model is torch.Size([50257, 1024]).
可以看到加載模型的時候提示word_embeddings.weight的shape不匹配,我們看一下word_embeddings在GPT2中的定義:
所以這個問題應該是訓練和測試的時候的vocab_size不同引起的。定位后發現這是因為訓練的時候需要把tokens數num_tokens pad到可以被args.make_vocab_size_divisible_by=128整除,但是預測的時候就沒這個限制了,因此導致了embedding的維度不匹配,我們修改一下DeepSpeedExamples/Megatron-LM/generate_samples.py對num_token的處理邏輯,使得和訓練一致。
再次執行bash scripts/generate_text.sh,我們就可以和GPT2對話了,輸出一條prompt模型會給你不同的補全輸出,然后輸入stop結束對話。
由于這里的模型只用了很少的數據做演示,所以基本沒有什么好的補全效果,后面可以加大數據量訓練一個更好的GPT2對話模型。
0x3. 參數量和顯存估計
在 https://zhuanlan.zhihu.com/p/624740065 這篇文章里面有對 GPT2 這種架構的 Transformer 的參數量和訓練顯存占用的推導,我們這里套用里面總結的公示計算一下我們當前的GPT2模型的參數量和訓練時的理論顯存占用。
參數量估計
套用下面的公示:我們這里的:l=24,hidden_size=1024,12lh^2=12x24x1024x1024=301989888=0.3B。所以我們這里訓練的GPT2模型只有大約0.3B參數。從模型的命名345M,我們也可以知道這個計算結果和真實大小基本一致。
訓練顯存占用估計
根據上述公式,模型參數,梯度,優化器狀態在訓練時的顯存占用大約為301989888*20bytes=6039797760bytes=5898240kb=5760MB=5.6G。然后激活占用的顯存如下:
我們訓練的時候 batch_size=8,s=1024,h=1024,a=num-attention-heads=16,l=24,那么。
所以0.3B的GPT2的訓練顯存占用大約為5.6G+21G=26.6G。但在0x1節中,我們可以看到我們的顯卡單卡顯存是24G,并且訓練過程中的顯存消耗只有15107MiB=14.75G,也就是說激活占用的顯存并不是我們計算的21G,而是14.75-5.6=9.15G,這是為什么呢?
這是因為在DeepSpeedExamples/Megatron-LM/scripts/pretrain_gpt2.sh里面打開了--checkpoint-activations,做了Activation Checkpoint。我們可以定位到這部分代碼,在DeepSpeedExamples/Megatron-LM/mpu/transformer.py:406-413:
在這里插入圖片描述
可以看到現在對于每個Transformer層來說,都可以省掉內部Self-Attention和MLP做backward時需要保存的中間激活,達到了減少顯存的目的。
0x4. Megatron使用多卡訓練GPT2模型
2卡數據并行
上面已經完成了單卡的GPT2模型的訓練,啟動多卡訓練比較簡單,修改一下DeepSpeedExamples/Megatron-LM/scripts/pretrain_gpt2_distributed.sh里面的--train-data為webtext,然后--train-iters改成600/num_gpus。實際上這個腳本啟動的是數據并行的訓練,那么我們只需要把iter數設置為600/num_gpus就可以和單卡掃到一樣規模的數據了。訓練數據,驗證集,測試的配比也要改一下,因為這里只是模擬數據太少了,按照原始的比例會把測試集的數據條數算成0而報錯。最后把GPUS_PER_NODE設成2,代表使用2卡進行數據并行訓練。接著就可以啟動訓練了:bash scripts/pretrain_gpt2_distributed.sh,日志如下:
/home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/distributed/launch.py FutureWarning: The module torch.distributed.launch is deprecated and will be removed in future. Use torchrun. Note that --use-env is set by default in torchrun. If your script expects `--local-rank` argument to be set, please change it to read from `os.environ['LOCAL_RANK']` instead. See https://pytorch.org/docs/stable/distributed.html#launch-utility for further instructions warnings.warn( WARNING ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** Setting ds_accelerator to cuda (auto detect) Setting ds_accelerator to cuda (auto detect) using world size: 2 and model-parallel size: 1 > using dynamic loss scaling > initializing model parallel with size 1 Pretrain GPT2 model arguments: pretrained_bert .............. False attention_dropout ............ 0.1 num_attention_heads .......... 16 hidden_size .................. 1024 intermediate_size ............ None num_layers ................... 24 layernorm_epsilon ............ 1e-05 hidden_dropout ............... 0.1 max_position_embeddings ...... 1024 vocab_size ................... 30522 deep_init .................... False make_vocab_size_divisible_by . 128 cpu_optimizer ................ False cpu_torch_adam ............... False fp16 ......................... True fp32_embedding ............... False fp32_layernorm ............... False fp32_tokentypes .............. False fp32_allreduce ............... False hysteresis ................... 2 loss_scale ................... None loss_scale_window ............ 1000 min_scale .................... 1 batch_size ................... 8 weight_decay ................. 0.01 checkpoint_activations ....... True checkpoint_num_layers ........ 1 deepspeed_activation_checkpointing False clip_grad .................... 1.0 train_iters .................. 300 log_interval ................. 100 exit_interval ................ None seed ......................... 1234 reset_position_ids ........... False reset_attention_mask ......... False lr_decay_iters ............... None lr_decay_style ............... cosine lr ........................... 0.00015 warmup ....................... 0.01 save ......................... checkpoints/gpt2_345m save_interval ................ 5000 no_save_optim ................ False no_save_rng .................. False load ......................... checkpoints/gpt2_345m no_load_optim ................ False no_load_rng .................. False finetune ..................... False resume_dataloader ............ True distributed_backend .......... nccl local_rank ................... 0 eval_batch_size .............. None eval_iters ................... 100 eval_interval ................ 1000 eval_seq_length .............. None eval_max_preds_per_seq ....... None overlapping_eval ............. 32 cloze_eval ................... False eval_hf ...................... False load_openai .................. False temperature .................. 1.0 top_p ........................ 0.0 top_k ........................ 0 out_seq_length ............... 256 model_parallel_size .......... 1 shuffle ...................... False train_data ................... ['webtext'] use_npy_data_loader .......... False train_data_path .............. val_data_path ................ test_data_path ............... input_data_sizes_file ........ sizes.txt delim ........................ , text_key ..................... sentence eval_text_key ................ None valid_data ................... None split ........................ 400,300,300 test_data .................... None lazy_loader .................. True loose_json ................... False presplit_sentences ........... False num_workers .................. 2 tokenizer_model_type ......... bert-large-uncased tokenizer_path ............... tokenizer.model tokenizer_type ............... GPT2BPETokenizer cache_dir .................... cache use_tfrecords ................ False seq_length ................... 1024 max_preds_per_seq ............ None deepspeed .................... False deepspeed_config ............. None deepscale .................... False deepscale_config ............. None deepspeed_mpi ................ False cuda ......................... True rank ......................... 0 world_size ................... 2 dynamic_loss_scale ........... True > initializing model parallel cuda seeds on global rank 0, model parallel rank 0, and data parallel rank 0 with model parallel seed: 3952 and data parallel seed: 1234 configuring data > padded vocab (size: 50257) with 47 dummy tokens (new size: 50304) > found end-of-document token: 50256 building GPT2 model ... > number of parameters on model parallel rank 0: 354871296 Optimizer = FusedAdam Optimizer = FusedAdam learning rate decaying cosine WARNING: could not find the metadata file checkpoints/gpt2_345m/latest_checkpointed_iteration.txt will not load any checkpoints and will start from random Partition Activations False and Correctness Check False iteration 100/ 300 | elapsed time per iteration (ms): 1048.5 | learning rate 1.258E-04 | lm loss 4.799004E+00 | loss scale 32768.0 | /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/cuda/memory.py FutureWarning: torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved warnings.warn( /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/cuda/memory.py FutureWarning: torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved warnings.warn( /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/cuda/memory.py FutureWarning: torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved warnings.warn( /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/cuda/memory.py FutureWarning: torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved warnings.warn( after 100 iterations memory (MB) | allocated: 6784.88427734375 | max allocated: 11927.470703125 | cached: 13826.0 | max cached: 13826.0 time (ms) | forward: 284.78 | backward: 749.95 | allreduce: 93.32 | optimizer: 13.60 | batch generator: 14.88 | data loader: 14.19 iteration 200/ 300 | elapsed time per iteration (ms): 1020.9 | learning rate 5.257E-05 | lm loss 7.708308E-02 | loss scale 32768.0 | time (ms) | forward: 256.87 | backward: 747.37 | allreduce: 93.08 | optimizer: 16.52 | batch generator: 0.71 | data loader: 0.11 iteration 300/ 300 | elapsed time per iteration (ms): 1018.4 | learning rate 1.806E-06 | lm loss 4.669175E-03 | loss scale 32768.0 | time (ms) | forward: 256.74 | backward: 744.96 | allreduce: 93.51 | optimizer: 16.53 | batch generator: 0.73 | data loader: 0.12 ---------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- validation loss at the end of training for val data | LM loss: 1.170473E+01 | LM PPL: 1.211437E+05 ---------------------------------------------------------------------------------------------------- global rank 0 is saving checkpoint at iteration 300 to checkpoints/gpt2_345m/iter_0000300/mp_rank_00/model_optim_rng.pt /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/nn/modules/module.py UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details. warnings.warn( successfully saved checkpoints/gpt2_345m/iter_0000300/mp_rank_00/model_optim_rng.pt Evaluating iter 100/100 ---------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------- validation loss at the end of training for test data | LM loss: 1.169765E+01 | LM PPL: 1.202885E+05 -----------------------------------------------------------------------------------------------------
顯存占用截圖:
由于是數據并行,單張卡的顯存占用和使用單卡進行訓練時差不多。
基于數據并行訓練出的模型進行推理也可以正常運行:
在這里插入圖片描述
2卡模型并行
我們使用這個腳本DeepSpeedExamples/Megatron-LM/scripts/pretrain_gpt2_model_parallel.sh來進行2卡的模型并行訓練,除了2卡數據并行相關的修改之外我們還需要去掉這個腳本里面的--deepspeed參數,因為要使用上DeepSpeed還需要執行deepspeed的config配置文件。和deepspeed相關的訓練特性,我們留到下一篇文章中探索。
使用bash scripts/pretrain_gpt2_model_parallel.sh 啟動2卡的模型并行訓練。日志:
/home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/distributed/launch.py FutureWarning: The module torch.distributed.launch is deprecated and will be removed in future. Use torchrun. Note that --use-env is set by default in torchrun. If your script expects `--local-rank` argument to be set, please change it to read from `os.environ['LOCAL_RANK']` instead. See https://pytorch.org/docs/stable/distributed.html#launch-utility for further instructions warnings.warn( WARNING ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** Setting ds_accelerator to cuda (auto detect) Setting ds_accelerator to cuda (auto detect) using world size: 2 and model-parallel size: 2 > using dynamic loss scaling > initializing model parallel with size 2 Pretrain GPT2 model arguments: pretrained_bert .............. False attention_dropout ............ 0.1 num_attention_heads .......... 16 hidden_size .................. 1024 intermediate_size ............ None num_layers ................... 24 layernorm_epsilon ............ 1e-05 hidden_dropout ............... 0.1 max_position_embeddings ...... 1024 vocab_size ................... 30522 deep_init .................... False make_vocab_size_divisible_by . 128 cpu_optimizer ................ False cpu_torch_adam ............... False fp16 ......................... True fp32_embedding ............... False fp32_layernorm ............... False fp32_tokentypes .............. False fp32_allreduce ............... False hysteresis ................... 2 loss_scale ................... None loss_scale_window ............ 1000 min_scale .................... 1 batch_size ................... 8 weight_decay ................. 0.01 checkpoint_activations ....... True checkpoint_num_layers ........ 1 deepspeed_activation_checkpointing False clip_grad .................... 1.0 train_iters .................. 600 log_interval ................. 100 exit_interval ................ None seed ......................... 1234 reset_position_ids ........... False reset_attention_mask ......... False lr_decay_iters ............... None lr_decay_style ............... cosine lr ........................... 0.00015 warmup ....................... 0.01 save ......................... checkpoints/gpt2_345m_mp2 save_interval ................ 5000 no_save_optim ................ False no_save_rng .................. False load ......................... checkpoints/gpt2_345m_mp2 no_load_optim ................ True no_load_rng .................. False finetune ..................... False resume_dataloader ............ True distributed_backend .......... nccl local_rank ................... 0 eval_batch_size .............. None eval_iters ................... 100 eval_interval ................ 1000 eval_seq_length .............. None eval_max_preds_per_seq ....... None overlapping_eval ............. 32 cloze_eval ................... False eval_hf ...................... False load_openai .................. False temperature .................. 1.0 top_p ........................ 0.0 top_k ........................ 0 out_seq_length ............... 256 model_parallel_size .......... 2 shuffle ...................... False train_data ................... ['webtext'] use_npy_data_loader .......... False train_data_path .............. val_data_path ................ test_data_path ............... input_data_sizes_file ........ sizes.txt delim ........................ , text_key ..................... sentence eval_text_key ................ None valid_data ................... None split ........................ 400,300,300 test_data .................... None lazy_loader .................. True loose_json ................... False presplit_sentences ........... False num_workers .................. 2 tokenizer_model_type ......... bert-large-uncased tokenizer_path ............... tokenizer.model tokenizer_type ............... GPT2BPETokenizer cache_dir .................... None use_tfrecords ................ False seq_length ................... 1024 max_preds_per_seq ............ None deepspeed .................... False deepspeed_config ............. None deepscale .................... False deepscale_config ............. None deepspeed_mpi ................ False cuda ......................... True rank ......................... 0 world_size ................... 2 dynamic_loss_scale ........... True > initializing model parallel cuda seeds on global rank 0, model parallel rank 0, and data parallel rank 0 with model parallel seed: 3952 and data parallel seed: 1234 configuring data > padded vocab (size: 50257) with 175 dummy tokens (new size: 50432) > found end-of-document token: 50256 building GPT2 model ... > number of parameters on model parallel rank 0: 178100224 > number of parameters on model parallel rank 1: 178100224 Optimizer = FusedAdam learning rate decaying cosine WARNING: could not find the metadata file checkpoints/gpt2_345m_mp2/latest_checkpointed_iteration.txt will not load any checkpoints and will start from random Optimizer = FusedAdam Partition Activations False and Correctness Check False s iteration 100/ 600 | elapsed time per iteration (ms): 810.9 | learning rate 1.444E-04 | lm loss 5.023855E+00 | loss scale 8192.0 | /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/cuda/memory.py FutureWarning: torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved warnings.warn( /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/cuda/memory.py FutureWarning: torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved warnings.warn( /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/cuda/memory.py FutureWarning: torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved warnings.warn( /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/cuda/memory.py FutureWarning: torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved warnings.warn( after 100 iterations memory (MB) | allocated: 3447.24365234375 | max allocated: 6237.830078125 | cached: 7890.0 | max cached: 7890.0 time (ms) | forward: 252.44 | backward: 550.96 | allreduce: 12.11 | optimizer: 7.26 | batch generator: 7.15 | data loader: 6.35 iteration 200/ 600 | elapsed time per iteration (ms): 844.2 | learning rate 1.210E-04 | lm loss 1.112287E-01 | loss scale 8192.0 | time (ms) | forward: 242.53 | backward: 589.63 | allreduce: 11.37 | optimizer: 10.92 | batch generator: 4.28 | data loader: 2.71 iteration 300/ 600 | elapsed time per iteration (ms): 824.7 | learning rate 8.518E-05 | lm loss 8.868908E-03 | loss scale 8192.0 | time (ms) | forward: 240.10 | backward: 572.66 | allreduce: 11.63 | optimizer: 11.32 | batch generator: 3.64 | data loader: 2.12 iteration 400/ 600 | elapsed time per iteration (ms): 790.5 | learning rate 4.666E-05 | lm loss 2.208042E-03 | loss scale 8192.0 | time (ms) | forward: 233.81 | backward: 547.29 | allreduce: 11.90 | optimizer: 9.11 | batch generator: 1.16 | data loader: 0.21 iteration 500/ 600 | elapsed time per iteration (ms): 792.8 | learning rate 1.574E-05 | lm loss 8.129998E-04 | loss scale 8192.0 | time (ms) | forward: 234.04 | backward: 549.56 | allreduce: 13.62 | optimizer: 9.02 | batch generator: 0.91 | data loader: 0.16 iteration 600/ 600 | elapsed time per iteration (ms): 787.7 | learning rate 6.939E-07 | lm loss 6.003926E-04 | loss scale 8192.0 | time (ms) | forward: 234.25 | backward: 544.30 | allreduce: 10.23 | optimizer: 9.00 | batch generator: 0.83 | data loader: 0.12 ---------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- validation loss at the end of training for val data | LM loss: 1.231077E+01 | LM PPL: 2.220759E+05 ---------------------------------------------------------------------------------------------------- global rank 1 is saving checkpoint at iteration 600 to checkpoints/gpt2_345m_mp2/iter_0000600/mp_rank_01/model_optim_rng.pt global rank 0 is saving checkpoint at iteration 600 to checkpoints/gpt2_345m_mp2/iter_0000600/mp_rank_00/model_optim_rng.pt /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/nn/modules/module.py UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details. warnings.warn( /home/zhangxiaoyu/miniconda3/envs/eval/lib/python3.9/site-packages/torch/nn/modules/module.py UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details. warnings.warn( successfully saved checkpoints/gpt2_345m_mp2/iter_0000600/mp_rank_01/model_optim_rng.pt successfully saved checkpoints/gpt2_345m_mp2/iter_0000600/mp_rank_00/model_optim_rng.pt Evaluating iter 100/100 ---------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------- validation loss at the end of training for test data | LM loss: 1.215604E+01 | LM PPL: 1.902403E+05 -----------------------------------------------------------------------------------------------------
顯存占用截圖:
在這里插入圖片描述
由于對模型參數進行了切分,現在單卡的顯存占用峰值從數據并行的15個G左右降低到了9個G。
這里如果直接使用這個模型進行推理,會在load checkpoint的時候出現參數和模型定義不匹配的問題。這是因為這個版本的Meagtron代碼沒有考慮到加載模型并行訓練存儲下來的模型,所以這里只能通過把兩個模型并行的子模型合并為一個完整的單卡模型來讓Megatron加載并進行推理。
但這但本文所在的這份Megatron-LM源碼中也沒有提供模型合并的工具,所以這里就不對這個模型并行訓練的模型進行推理了。如果你想對模型并行訓練的checkpoint進行推理,最簡單的方法就是直接用nvidia的Megatron-LM的最新代碼進行模型訓練和推理,它不僅支持模型并行還支持流水并行并且可以加載任意組合并行的模型進行推理。此外,官方Megatron還提供了工具將原始任意模型并行大小和流水并行大小的checkpoint轉換為用戶指定的模型并行大小和流水并行大小的checkpoint。(https://github.com/NVIDIA/Megatron-LM/tree/main#evaluation-and-tasks) 如下圖所示:
在這里插入圖片描述
審核編輯:湯梓紅
-
gpu
+關注
關注
28文章
4768瀏覽量
129227 -
模型
+關注
關注
1文章
3298瀏覽量
49074 -
代碼
+關注
關注
30文章
4823瀏覽量
68903 -
GitHub
+關注
關注
3文章
473瀏覽量
16530 -
pytorch
+關注
關注
2文章
808瀏覽量
13330
原文標題:0x5. 總結
文章出處:【微信號:GiantPandaCV,微信公眾號:GiantPandaCV】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論