一、概述
在 C/C++ 中,內存管理是一個非常棘手的問題,我們在編寫一個程序的時候幾乎不可避免的要遇到內存的分配邏輯,這時候隨之而來的有這樣一些問題:是否有足夠的內存可供分配?分配失敗了怎么辦? 如何管理自身的內存使用情況? 等等一系列問題。在一個高可用的軟件中,如果我們僅僅單純的向操作系統去申請內存,當出現內存不足時就退出軟件,是明顯不合理的。
正確的思路應該是在內存不足的時,考慮如何管理并優化自身已經使用的內存,這樣才能使得軟件變得更加可用。本次項目我們將實現一個內存池,并使用一個棧結構來測試我們的內存池提供的分配性能。最終,我們要實現的內存池在棧結構中的性能,要遠高于使用 std::allocator 和 std::vector,如下圖所示:
項目涉及的知識點
C++ 中的內存分配器 std::allocator
內存池技術
手動實現模板鏈式棧
鏈式棧和列表棧的性能比較
內存池簡介
內存池是池化技術中的一種形式。通常我們在編寫程序的時候回使用 new delete 這些關鍵字來向操作系統申請內存,而這樣造成的后果就是每次申請內存和釋放內存的時候,都需要和操作系統的系統調用打交道,從堆中分配所需的內存。如果這樣的操作太過頻繁,就會找成大量的內存碎片進而降低內存的分配性能,甚至出現內存分配失敗的情況。
而內存池就是為了解決這個問題而產生的一種技術。從內存分配的概念上看,內存申請無非就是向內存分配方索要一個指針,當向操作系統申請內存時,
操作系統需要進行復雜的內存管理調度之后,才能正確的分配出一個相應的指針。而這個分配的過程中,我們還面臨著分配失敗的風險。
所以,每一次進行內存分配,就會消耗一次分配內存的時間,設這個時間為 T,那么進行 n 次分配總共消耗的時間就是 nT;如果我們一開始就確定好我們可能需要多少內存,那么在最初的時候就分配好這樣的一塊內存區域,當我們需要內存的時候,直接從這塊已經分配好的內存中使用即可,那么總共需要的分配時間僅僅只有 T。當 n 越大時,節約的時間就越多。
二、主函數設計
我們要設計實現一個高性能的內存池,那么自然避免不了需要對比已有的內存,而比較內存池對內存的分配性能,就需要實現一個需要對內存進行動態分配的結構(比如:鏈表棧),為此,可以寫出如下的代碼:
在上面的兩段代碼中,StackAlloc 是一個鏈表棧,接受兩個模板參數,第一個參數是棧中的元素類型,第二個參數就是棧使用的內存分配器。
因此,這個內存分配器的模板參數就是整個比較過程中唯一的變量,使用默認分配器的模板參數為 std::allocator,而使用內存池的模板參數為 MemoryPool。
std::allocator 是 C++標準庫中提供的默認分配器,他的特點就在于我們在 使用 new 來申請內存構造新對象的時候,勢必要調用類對象的默認構造函數,而使用 std::allocator 則可以將內存分配和對象的構造這兩部分邏輯給分離開來,使得分配的內存是原始、未構造的。
下面我們來實現這個鏈表棧。
三、模板鏈表棧
棧的結構非常的簡單,沒有什么復雜的邏輯操作,其成員函數只需要考慮兩個基本的操作:入棧、出棧。為了操作上的方便,我們可能還需要這樣一些方法:判斷棧是否空、清空棧、獲得棧頂元素。
簡單的邏輯諸如構造、析構、判斷棧是否空、返回棧頂元素的邏輯都非常簡單,直接在上面的定義中實現了,下面我們來實現 clear(), push() 和 pop() 這三個重要的邏輯:
至此,我們完成了整個模板鏈表棧,現在我們可以先注釋掉 main() 函數中使用內存池部分的代碼來測試這個連表棧的內存分配情況,我們就能夠得到這樣的結果:
在使用 std::allocator 的默認內存分配器中,在
#define ELEMS 10000000 #define REPS 100
的條件下,總共花費了近一分鐘的時間。
如果覺得花費的時間較長,不愿等待,則你嘗試可以減小這兩個值
總結
本節我們實現了一個用于測試性能比較的模板鏈表棧,目前的代碼如下。在下一節中,我們開始詳細實現我們的高性能內存池。
二、設計內存池
在上一節實驗中,我們在模板鏈表棧中使用了默認構造器來管理棧操作中的元素內存,一共涉及到了 rebind::other, allocate(), dealocate(), construct(), destroy()這些關鍵性的接口。所以為了讓代碼直接可用,我們同樣應該在內存池中設計同樣的接口:
在上面的類設計中可以看到,在這個內存池中,其實是使用鏈表來管理整個內存池的內存區塊的。內存池首先會定義固定大小的基本內存區塊(Block),然后在其中定義了一個可以實例化為存放對象內存槽的對象槽(Slot_)和對象槽指針的一個聯合。然后在區塊中,定義了四個關鍵性質的指針,它們的作用分別是:
currentBlock_: 指向當前內存區塊的指針
currentSlot_: 指向當前內存區塊中的對象槽
lastSlot_: 指向當前內存區塊中的最后一個對象槽
freeSlots_: 指向當前內存區塊中所有空閑的對象槽
梳理好整個內存池的設計結構之后,我們就可以開始實現關鍵性的邏輯了。
三、實現
MemoryPool::construct() 實現
MemoryPool::construct() 的邏輯是最簡單的,我們需要實現的,僅僅只是調用信件對象的構造函數即可,因此:
MemoryPool::deallocate() 實現
MemoryPool::deallocate() 是在對象槽中的對象被析構后才會被調用的,主要目的是銷毀內存槽。其邏輯也不復雜:
MemoryPool::~MemoryPool() 實現
析構函數負責銷毀整個內存池,因此我們需要逐個刪除掉最初向操作系統申請的內存塊:
MemoryPool::allocate() 實現
MemoryPool::allocate() 毫無疑問是整個內存池的關鍵所在,但實際上理清了整個內存池的設計之后,其實現并不復雜。具體實現如下:
四、與 std::vector 的性能對比
我們知道,對于棧來說,鏈棧其實并不是最好的實現方式,因為這種結構的棧不可避免的會涉及到指針相關的操作,同時,還會消耗一定量的空間來存放節點之間的指針。事實上,我們可以使用 std::vector 中的 push_back() 和 pop_back() 這兩個操作來模擬一個棧,我們不妨來對比一下這個 std::vector 與我們所實現的內存池在性能上誰高誰低,我們在 主函數中加入如下代碼:
這時候,我們重新編譯代碼,就能夠看出這里面的差距了:
首先是使用默認分配器的鏈表棧速度最慢,其次是使用 std::vector 模擬的棧結構,在鏈表棧的基礎上大幅度削減了時間。
std::vector 的實現方式其實和內存池較為類似,在 std::vector 空間不夠用時,會拋棄現在的內存區域重新申請一塊更大的區域,并將現在內存區域中的數據整體拷貝一份到新區域中。
最后,對于我們實現的內存池,消耗的時間最少,即內存分配性能最佳,完成了本項目。
總結
本節中,我們實現了我們上節實驗中未實現的內存池,完成了整個項目的目標。 這個內存池不僅精簡而且高效,整個內存池的完整代碼如下:
審核編輯:劉清
-
分配器
+關注
關注
0文章
195瀏覽量
25803 -
內存管理
+關注
關注
0文章
168瀏覽量
14165 -
C++語言
+關注
關注
0文章
147瀏覽量
7019
原文標題:C++ 實現高性能內存池項目實現
文章出處:【微信號:程序喵大人,微信公眾號:程序喵大人】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論