色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

GaN打破壁壘—RF功率放大器的帶寬越來越寬、 功率越來越高

eeDesigner ? 來源:物聯網評論 ? 作者:物聯網評論 ? 2022-09-15 18:08 ? 次閱讀

摘要

電信行業不斷需要更高的數據速率,工業系統不斷需要更高的分辨率,這助推了滿足這些需求的電子設備工作頻率的不斷上升。許多系統可以在較寬的頻譜中工作,新設計通常也會有進一步增加帶寬的要求。在許多這樣的系統中,人們傾向于使用一個涵蓋所有頻帶的信號鏈。半導體技術的進步使高功率寬帶放大器功能突飛猛進。GaN革命席卷了整個行業,并且可以讓MMIC在幾十種帶寬下生成1 W以上的功率,因此,這個過去由行波管主導的領域已經開始讓步于半導體設備。更短柵極長度的GaAs和GaN晶體管的出現以及電路設計技術的升級,衍生了一些可以輕松操作毫米波頻率的新設備,開啟了幾十年前難以想象的新應用。本文將簡要描述支持這些發展的半導體技術的狀態、實現優質性能的電路設計考慮因素,還列舉了展現當今技術的GaAs和GaN寬帶功率放大器(PA)。

許多無線電子系統都可覆蓋很寬的頻率范圍。在軍事工業中,雷達頻段可覆蓋從幾百MHz到GHz級頻率。一些電子戰和電子對抗系統需要在極寬的帶寬下工作。各種不同頻率,如MHz至20 GHz,甚至包括更高的頻率,現在都面臨著挑戰。隨著越來越多電子設備支持更高頻率,對更高頻率電子戰系統的需求將會出現井噴。在電信行業,基站的工作頻率為450 MHz至3.5 GHz左右,并且隨著更高帶寬的需求增長而持續增加。衛星通信系統的工作頻率主要為C-波段至Ka-波段。用于測量這些不同電子設備的儀器儀表需要能在所有這些必要的頻率下工作,才能得到國際認可。因此,系統工程師需要努力嘗試設計一些能夠覆蓋整個頻率范圍的電子設備。想到可以使用單個信號鏈覆蓋整個頻率范圍,大多數系統工程師和采購人員都會非常興奮。用單個信號鏈覆蓋整個頻率范圍將會帶來許多優勢,其中包括簡化設計、加速上市時間、減少要管理的器件庫存等。單信號鏈方案的挑戰始終繞不開寬帶解決方案相對窄帶解決方案的性能衰減。挑戰的核心在于功率放大器,對于窄帶寬其具有一流的功率和效率性能。

半導體技術

過去幾年,行波管(TWT)放大器一直將更高功率電子設備作為許多這類系統中的輸出功率放大器級。TWT擁有一些不錯的特性,包括千瓦級功率、倍頻程帶寬或者甚至多倍頻程帶寬操作、高效回退操作以及良好的溫度穩定性。TWT也有一些缺陷,其中包括較差的長期可靠性、較低效率,并且需要非常高的電壓(大約1 kV或以上)才能工作。關于半導體IC的長期穩定性,這些年電子設備一直向前發展,首當其沖的就是GaAs。在可能的情況下,許多系統工程師一直努力組合多個GaAs IC,生成大輸出功率。整個公司都完全建立在技術組合和有效實施的基礎之上。進而孕育了許多不同類型的組合技術,如空間組合、企業組合等。這些組合技術全都面臨著相同的命運——組合造成了損耗,幸運的是,并不一定要使用這些組合技術。這激勵我們使用高功率電子設備開始設計。提高功率放大器RF功率的最簡單的方式就是增加電壓,這讓氮化鎵晶體管技術極具吸引力。如果我們對比不同半導體工藝技術,就會發現功率通常會如何隨著高工作電壓IC技術而提高。硅鍺(SiGe)技術采用相對較低的工作電壓(2 V至3 V),但其集成優勢非常有吸引力。GaAs擁有微波頻率和5 V至7 V的工作電壓,多年來一直廣泛應用于功率放大器。硅基LDMOS技術的工作電壓為28 V,已經在電信領域使用了許多年,但其主要在4 GHz以下頻率發揮作用,因此在寬帶應用中的使用并不廣泛。新興GaN技術的工作電壓為28 V至50 V,擁有低損耗、高熱傳導基板(如碳化硅,SiC),開啟了一系列全新的可能應用。如今,硅基GaN技術局限于6 GHz以下工作頻率。硅基板相關的RF損耗及其相對SiC的較低熱傳導性能則抵消了增益、效率和隨頻率增加的功率優勢。圖1對比了不同半導體技術并顯示了其相互比較情況。

poYBAGMi-YeAUvLwAAA41kEhCTo123.png?la=en&imgver=1

圖1. 微波頻率范圍功率電子設備的工藝技術對比。

GaN技術的出現讓業界放棄TWT放大器,轉而使用GaN放大器作為許多系統的輸出級。這些系統中的驅動放大器仍然主要使用GaAs,這是因為這種技術已經大量部署并且始終在改進。下一步,我們將尋求如何使用電路設計,從這些寬帶功率放大器中提取較大功率、帶寬和效率。當然,相比基于GaAs的設計,基于GaN的設計能夠提供更高的輸出功率,并且其設計考慮因素在很大程度上是相同的。

設計考慮因素

選擇如何開始設計以優化功率、效率及帶寬時,IC設計師可以使用不同拓撲及設計考慮因素。最常見的單塊放大器設計類型就是一種多級、共源、基于晶體管的設計,也稱作級聯放大器設計。這里,增益放大器會從每一級增加,從而實現高增益,并允許我們增加輸出晶體管大小,以增加RF功率。GaN在這里提供了一些優勢,因為我們能夠大幅簡化輸出合成器、減少損耗,因而可以提高效率,減小芯片尺寸,如圖2所示。因此,我們能夠實現更寬帶寬并提高性能。從GaAs轉向GaN設備的一個不太明顯的優勢就是,能夠實現給定RF功率水平,可能是4 W。晶體管尺寸將會更小,從而實現更高的每級增益。這將帶來更少的設計級,最終實現更高效率。這些級聯放大器技術的挑戰在于,在不顯著降低功率和效率,甚至在不借助GaN技術的情況下,很難實現倍頻程帶寬。

pYYBAGMi-YiAX9MzAAA42sQ9EkM086.png?la=en&imgver=2

圖2. 多級GaAs功率放大器和等效GaN功率放大器的比較。

蘭格耦合器

實現寬帶寬設計的一種方法就是在RF輸入和輸出端使用蘭格耦合器實現均衡設計,如圖3所示。這里的回波損耗最終取決于耦合器設計,因為這將更容易優化增益和頻率功率響應,并且無需優化回波損耗。即便是在使用蘭格耦合器的情況下,也更難實現倍頻程帶寬,但卻可以讓設計實現不錯的回波損耗。

pYYBAGMi-YmAc_3vAAAvPy2Ay0E564.png?la=en&imgver=1

圖3. 采用蘭格耦合器的均衡放大器。

分布式放大器

另一個要考慮的拓撲就是分布式功率放大器,如圖4所示。分布式功率放大器的優勢可通過在設備間的匹配網絡中應用晶體管的寄生效應來實現。設備的輸入和輸出電容可以分別與柵極和漏極線路電感合并,讓傳輸線路變得幾乎透明,傳輸線路損耗除外。這樣,放大器的增益應該僅受限于設備的跨導性,而非設備相關的電容寄生性能。僅當沿柵極線路向下傳輸的信號與沿漏極線路向下傳輸的信號同相時,才會發生這種情況。因此,每個晶體管的輸出電壓將與之前的晶體管輸出同相。向輸出端傳輸的信號將會積極干擾,因此,信號會隨著漏極線路而增強。任何反向波都會肆意干擾信號,因為這些信號不會同相。其中包含柵極線路端電極,可吸收任何未耦合至晶體管柵極的信號。還包含漏極線路端電極,可吸收任何可能肆意干擾輸出信號并改善低頻率下回波損耗的反向行波。因此,在幾十種帶寬下都可實現從kHz到GHz級的頻率。當需要多個倍頻程帶寬時,這種拓撲就會變得非常受歡迎,并且還帶來了幾個不錯的優勢,如平穩增益、良好的回波損耗、高功率等。圖4顯示了分布式放大器的一個例證。

pYYBAGMi-YuAGC1ZAAAmsaRbyTA939.png?la=en&imgver=2

圖4. 分布式放大器的簡化框圖。

在這里,分布式放大器面臨的一個挑戰就是,功率功能由設備所使用的電壓決定。由于不存在窄帶調節功能,所以您可以實質上向晶體管提供50 Ω或接近于50 Ω的電阻。在等式1中,PA的平均功率、RL或最佳負載電阻實質上將變成50 Ω。因此,可實現的輸出功率由施加到放大器的電壓設定,所以,如果我們想要增加輸出功率,就需要增加施加到放大器的電壓。

pYYBAGMi-Y2AVxIsAAAH342Lg88632.png?la=en&imgver=2

這就是GaN的作用所在,我們可以迅速將帶GaAs的5 V電源電壓轉變成GaN中的28 V電源電壓,并且只需將GaAs轉變成GaN技術,即可將可實現的功率從0.25 W轉變成8 W左右。還要考慮一些其他因素,如GaN中可用工藝的柵極長度,以及它們能否在高頻率帶端實現所需的增益。隨著時間發展,將會出現更多的GaN工藝。

級聯放大器需要通過匹配網絡來優化放大器功率,以此改變晶體管電阻值,相比之下,分布式放大器的50 Ω固定RL有所不同。利用級聯放大器優化晶體管電阻值時存在一個優勢,就是能提高RF功率。理論上,我們可以繼續增加晶體管外設尺寸,從而繼續提高RF功率,但這存在一些實際限制,如復雜性、芯片支持和合并損耗。匹配網絡也會限制帶寬,因為它們很難在廣泛的頻率范圍中提供最佳阻抗。分布式功率放大器中只有傳輸線路,其目的是讓信號積極干擾放大器,并沒有匹配網絡。還有一些技術可以進一步提高分布式放大器的功率,如使用共射共基放大器拓撲來進一步增加放大器的電源電壓。

結果

關于提供最佳功率、效率和帶寬的權衡,我們已經說明了各種不同的技巧和半導體技術。每一種不同拓撲和技術都有可能在半導體市場占據一席之地,這是因為它們每一個都有優勢,這也是它們能夠在當前生存的原因所在。這里,我們將關注幾個值得信賴的結果,展現這些當前技術在實現高功率、效率和帶寬時的可能性。

當前的產品功能

我們將了解ADI公司基于GaAs的分布式功率放大器產品HMC994A,工作頻率范圍為直流至30 GHz。該器件非常有意思,因為它覆蓋了幾十種帶寬、許多不同應用,并且可實現高功率和效率。其性能如圖5所示。在這里,我們看到它是覆蓋MHz至30 GHz、功率附加效率(PAE)典型值為25%的飽和輸出功率大于1瓦的器件。這款產品還擁有標準值為38 dBm的強大的三階交調截點(TOI)性能。結果顯示,利用基于GaAs的設計,我們能夠實現接近于許多窄帶功率放大器設計的效率。HMC994A擁有正向頻率增益斜率、高PAE寬帶功率性能和強大的回波損耗,是一款非常有趣的產品。

poYBAGMi-Y6AJw_PAABKGJ3AVvA821.png?la=en&imgver=2

圖5. HMC994A增益、功率以及PAE和頻率的關系。

我們再來了解一下基于GaN技術可以做些什么。ADI公司推出了一款標準產品HMC8205BF10,它基于GaN技術,具有高功率、高效率 和寬帶寬。該產品的工作電源電壓為50 V,在35%的典型頻率下可提供35 W RF功率,帶20 dB左右的功率增益,覆蓋幾十種帶寬。這種情況下,相比類似的GaAs方案,我們只需要一個IC就能提供高出約10倍的功率。在過去數年,這可能需要復雜的GaAs芯片組合方案,并且無法實現相同的效率。該產品展示了使用GaN技術的各種可能性,包括覆蓋寬帶寬,提供高功率和高效率,如圖6所示。這還展現了高功率電子設備封裝技術的發展歷程,因為這個采用法蘭封裝的器件能夠支持許多軍事應用所需的連續波(CW)信號。

pYYBAGMi-Y-AQavBAABPJDI5dhY979.png?la=en&imgver=2

圖6. HMC8205BF10功率增益、PSAT以及PAE和頻率的關系。

結語

GaN等全新半導體材料的出現開啟了實現覆蓋寬帶寬的更高功率水平的可能性。較短的柵極長度GaAs設備的頻率范圍已經從20 GHz擴展到了40 GHz及以上。這些器件的可靠性幾乎已經超過了100萬小時,普遍應用于當今的電子設備系統中。未來,我們預計會持續向更高頻率和更寬帶寬發展。

作者

poYBAGMi-ZCAdsUNAAARn0U7CFk059.jpg?la=zh&imgver=1

Keith Benson

Keith Benson于2002年畢業于馬薩諸塞大學安姆斯特分校,獲電氣工程學士學位,2004年畢業于加州大學圣塔芭芭拉分校,獲電氣工程碩士學位。他之前就職于Hittite Microwave,主攻RF無線電子的IC設計。然后轉向IC設計工程師團隊管理,主要負責無線通信鏈路。2014年,ADI公司收購了Hittite Microwave,Keith成為ADI公司RF/MW放大器和相控陣IC的產品線總監。Keith目前擁有3項新穎放大器技術方面的美國專利。

審核編輯 黃昊宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 帶寬
    +關注

    關注

    3

    文章

    947

    瀏覽量

    41008
  • GaN
    GaN
    +關注

    關注

    19

    文章

    1953

    瀏覽量

    73889
  • rf功率放大器

    關注

    0

    文章

    5

    瀏覽量

    1582
收藏 人收藏

    評論

    相關推薦

    RF功率放大器帶寬越來越功率越來越高

    電信行業不斷需要更高的數據速率,工業系統不斷需要更高的分辨率,這助推了滿足這些需求的電子設備工作頻率的不斷上升。許多系統可以在較寬的頻譜中工作,新設計通常也會有進一步增加帶寬的要求。在許多這樣的系統中,人們傾向于使用一個涵蓋所有頻帶的信號鏈。
    發表于 02-22 17:03 ?854次閱讀
    <b class='flag-5'>RF</b><b class='flag-5'>功率放大器</b>的<b class='flag-5'>帶寬</b><b class='flag-5'>越來越</b><b class='flag-5'>寬</b>、 <b class='flag-5'>功率</b><b class='flag-5'>越來越高</b>

    AM08012041WN-XX-R GaN MMIC 功率放大器

    AMCOM的AM08012041WN-00-R/AM08012041WN-SN-R是款寬帶GaN MMIC功率放大器。AM08012041WN-00-R/AM08012041WN-SN-R在7.5到
    發表于 03-15 09:36

    基于CPLD的數字功率放大器的研究與實現

    方面的技術已經相當成熟,可以說是達到了登峰造極的地步。環保與能量的利用率已漸漸成為人們所關注的問題,正因為這樣,廣大消費者對功放的效率要求越來越高。但是模擬功率放大器在這方面幾乎達到了極限。另外模擬磁帶播放機
    發表于 07-01 09:37

    功率放大器,超聲功率放大器定義分類和應用

    功率放大器,從低頻到高頻,從中小功率到大功率,根據各類參數指標分為:帶寬放大器、高壓放大器
    發表于 12-15 09:36

    GaAs和GaN寬帶功率放大器電路設計考慮因素

    功率和效率,甚至在不借助GaN技術的情況下,很難實現倍頻程帶寬。圖2. 多級GaAs功率放大器和等效GaN
    發表于 10-17 10:35

    Doherty射頻功率放大器技術設計介紹

    認為是功率放大器線性化的方向。而隨著現代通信的發展,效率也開始越來越被關注。Doherty方法被認為是提高效率最有前景的一種結構。前饋與Doherty結構相結合的結構或者數字預失真與Doherty結合的結構具有很大的價值。
    發表于 07-09 07:10

    RF功率放大器如何打破壁壘

    的新應用。本文將簡要描述支持這些發展的半導體技術的狀態、實現最佳性能的電路設計考慮因素,還列舉了展現當今技術的GaAs和GaN寬帶功率放大器(PA)。
    發表于 07-16 07:56

    如何設計2.45GHz WLAN功率放大器

    1、引言如何設計2.45GHz WLAN功率放大器?近年來,隨著無線通信技術的迅速發展,對全集成、高性能、低成本的無線收發機的需求變得越來越迫切。而發射機系統中的一個關鍵模塊就是功率放大器,從功耗
    發表于 07-30 06:24

    GaN技術怎么助力RF功率放大器的較大功率帶寬和效率?

    GaN技術的出現讓業界放棄TWT放大器,轉而使用GaN放大器作為許多系統的輸出級。這些系統中的驅動放大器仍然主要使用GaAs,這是因為這種技
    發表于 09-04 08:07

    為什么Web前端工程師薪資越來越高

    2019年,為什么Web前端工程師薪資越來越高
    發表于 06-18 10:14

    應該如何選擇合適的電源為5G基站組件供電?

    10月。8 Keith Benson,“GaN打破壁壘——RF功率放大器帶寬
    發表于 11-23 07:14

    高頻功率放大器該怎樣去設計呢

    摘要隨著無線通信技術的高速發展,市場對射頻電路的需求越來越大,同時對射頻電路的性能要求也越來越高。高頻功率放大器是位于無線發射級末端的重要部件,為了彌補信號在無線傳輸過程中的衰耗,要求發射機具有較大
    發表于 11-11 09:19

    RF功率放大器的設計

    RF功率放大器常用于雷達以及各種無線電發射機的末端,以大幅度提高輸出信號的功率為目的。系統的耗電量和誤碼率是衡量無線通訊系統的兩個重要指標,I訌功率放大器作為系統中主要的非線性耗能器件
    發表于 12-22 14:35

    如何使用GaN MMIC和同軸波導空間功率合成的功率放大器詳細資料概述

    越來越高功率商用微波單片集成電路(MMIC)放大器的可用性使得固態放大器的構建能夠實現僅由行波管放大器(TWTA)實現的輸出
    發表于 07-31 11:29 ?10次下載
    如何使用<b class='flag-5'>GaN</b> MMIC和同軸波導空間<b class='flag-5'>功率</b>合成的<b class='flag-5'>功率放大器</b>詳細資料概述

    高頻功率放大器的設計實現

    摘 要隨著無線通信技術的高速發展,市場對射頻電路的需求越來越大,同時對射頻電路的性能要求也越來越高。高頻功率放大器是位于無線發射級末端的重要部件,為了彌補信號在無線傳輸過程中的衰耗,要求發射機
    發表于 11-06 19:51 ?62次下載
    高頻<b class='flag-5'>功率放大器</b>的設計實現
    主站蜘蛛池模板: 亚洲精品乱码久久久久久中文字幕| 国产精品第100页| 坠落的丝袜美人妻| 边做边爱BD免费看片| 精品国产九九| 我要色色网| 阿片在线播放| 久久久黄色片| 色偷偷网址| 97免费观看视频| 狠狠色丁香婷婷久久综合| 日本高清二区| 中文字幕在线永久| 吉吉影音先锋av资源网| 婷婷五月久久精品国产亚洲 | 洗濯屋H纯肉动漫在线观看 | 日韩亚洲中文欧美在线| 2020久久精品永久免费| 精品区2区3区4区产品乱码9| 日日操夜夜摸| JK白丝校花爽到娇喘视频| 久久re这里视频精品8| 午夜深情在线观看免费| 成人亚洲精品| 青年医生插曲| AV色蜜桃一区二区三区| 麻豆国产成人AV在线| 中文字幕无码A片久久| 精品日产1区2卡三卡麻豆| 亚洲.日韩.欧美另类| 国产精品A久久久久久久久| 三级网址在线观看| 成人精品亚洲| 欧美猛男gaygayxxgv| 99久久国产露脸精品国产吴梦梦| 久久亚洲精品无码A片大香大香| 亚洲精品国产高清不卡在线| 国产精品一区二区三区四区五区 | 2020国产成人免费视频| 老师破女学生特级毛片| 40分钟超爽大片黄|