色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

常見MOSFET失效模式的分析與解決方法

suanjunihao ? 來源:suanjunihao ? 作者:suanjunihao ? 2022-08-09 10:13 ? 次閱讀

常見MOSFET失效模式的分析與解決方法

提高功率密度已經(jīng)成為電源變換器的發(fā)展趨勢(shì)。為達(dá)到這個(gè)目標(biāo),需要提高開關(guān)頻率,從而降低功率損耗、系 統(tǒng)整體尺寸以及重量。對(duì)于當(dāng)今的開關(guān)電源(SMPS)而言,具有高可靠性也是非常重要的。零電壓開關(guān)(ZVS) 或零電流開關(guān)(ZCS) 拓?fù)湓试S采用高頻開關(guān)技術(shù),可以 大限度地降低開關(guān)損耗。ZVS拓?fù)湓试S工作在高頻開 關(guān)下,能夠改善效率,能夠降低應(yīng)用的尺寸,還能夠降 低功率開關(guān)的應(yīng)力,因此可以改善系統(tǒng)的可靠性。LLC 諧振半橋變換器因其自身具有的多種優(yōu)勢(shì)逐漸成為一種 主流拓?fù)洹_@種拓?fù)涞玫搅藦V泛的應(yīng)用,包括高端服務(wù) 器、平板顯示器電源的應(yīng)用。但是,包含有LLC諧振半 橋的ZVS橋式拓?fù)洌枰粋€(gè)帶有反向快速恢復(fù)體二極 管的MOSFET,才能獲得更高的可靠性。

【導(dǎo)讀】提高功率密度已經(jīng)成為電源變換器的發(fā)展趨勢(shì)。為達(dá)到這個(gè)目標(biāo),需要提高開關(guān)頻率,從而降低功率損耗、系 統(tǒng)整體尺寸以及重量。對(duì)于當(dāng)今的開關(guān)電源(SMPS)而言,具有高可靠性也是非常重要的。零電壓開關(guān)(ZVS) 或零電流開關(guān)(ZCS) 拓?fù)湓试S采用高頻開關(guān)技術(shù),可以 大限度地降低開關(guān)損耗。ZVS拓?fù)湓试S工作在高頻開 關(guān)下,能夠改善效率,能夠降低應(yīng)用的尺寸,還能夠降 低功率開關(guān)的應(yīng)力,因此可以改善系統(tǒng)的可靠性。LLC 諧振半橋變換器因其自身具有的多種優(yōu)勢(shì)逐漸成為一種 主流拓?fù)洹_@種拓?fù)涞玫搅藦V泛的應(yīng)用,包括高端服務(wù) 器、平板顯示器電源的應(yīng)用。但是,包含有LLC諧振半 橋的ZVS橋式拓?fù)洌枰粋€(gè)帶有反向快速恢復(fù)體二極 管的MOSFET,才能獲得更高的可靠性。

在功率變換市場(chǎng)中,尤其對(duì)于通信/服務(wù)器電源應(yīng)用,不 斷提高功率密度和追求更高效率已經(jīng)成為具挑戰(zhàn)性的 議題。對(duì)于功率密度的提高,普遍方法就是提高開關(guān) 頻率,以便降低無源器件的尺寸。零電壓開關(guān)(ZVS)拓 撲因具有極低的開關(guān)損耗、較低的器件應(yīng)力而允許采用 高開關(guān)頻率以及較小的外形,從而越來越受到青睞 。這些諧振變換器以正弦方式對(duì)能量進(jìn)行處理,開 關(guān)器件可實(shí)現(xiàn)軟開閉,因此可以大大地降低開關(guān)損耗和 噪聲。在這些拓?fù)渲校嘁芞VS全橋拓?fù)湓谥小⒏吖β?應(yīng)用中得到了廣泛采用,因?yàn)榻柚β蔒OSFET的等效 輸出電容和變壓器的漏感可以使所有的開關(guān)工作在ZVS 狀態(tài)下,無需額外附加輔助開關(guān)。然而,ZVS范圍非常 窄,續(xù)流電流消耗很高的循環(huán)能量。近來,出現(xiàn)了關(guān)于 相移全橋拓?fù)渲泄β蔒OSFET失效問題的討論。這種 失效的主要原因是:在低反向電壓下,MSOFET體二極 管的反向恢復(fù)較慢。另一失效原因是:空載或輕載情況 下,出現(xiàn)Cdv/dt直通。在LLC諧振變換器中的一個(gè)潛在 失效模式與由于體二極管反向恢復(fù)特性較差引起的直通 電流相關(guān)。即使功率MOSFET的電壓和電流處于安全工作區(qū)域,反向恢復(fù)dv/dt和擊穿dv/dt也會(huì)在如啟動(dòng)、 過載和輸出短路的情況下發(fā)生。

LLC諧振半橋變換器

LLC諧振變換器與傳統(tǒng)諧振變換器相比有如下優(yōu)勢(shì):

■寬輸出調(diào)節(jié)范圍,窄開關(guān)頻率范圍

■即使空載情況下,可以保證ZVS

■利用所有的寄生元件,來獲得ZVS

LLC諧振變換器可以突破傳統(tǒng)諧振變換器的局限。正是 由于這些原因,LLC諧振變換器被廣泛應(yīng)用在電源供電 市場(chǎng)。LLC諧振半橋變換器拓?fù)淙鐖D1所示,其典型波 形如圖2所示。圖1中,諧振電路包括電容Cr和兩個(gè)與之 串聯(lián)的電感Lr和Lm。作為電感之一,電感Lm表示變壓器 的勵(lì)磁電感,并且與諧振電感Lr和諧振電容Cr共同形成 一個(gè)諧振點(diǎn)。重載情況下,Lm會(huì)在反射負(fù)載RLOAD的作用 下視為完全短路,輕載情況下依然保持與諧振電感Lr串 聯(lián)。因此,諧振頻率由負(fù)載情況決定。Lr 和Cr決定諧振 頻率fr1,Cr和兩個(gè)電感Lr 、Lm決定第二諧振頻率fr2,隨 著負(fù)載的增加,諧振頻率隨之增加。諧振頻率在由變壓 器和諧振電容Cr決定的大值和小值之間變動(dòng),如公 式1、2所示。

pYYBAGLxwtyAFDSfAABEH-f_gmY899.jpg

poYBAGLxwt6AHMpOAACVNUfuCqU434.jpg

LLC諧振變換器的失效模式

啟動(dòng)失效模式

pYYBAGLxwt6Afs-GAACjD8T-ACU934.jpg

poYBAGLxwt6AHFU2AABIREtrozA870.jpg

圖3和圖4給出了啟動(dòng)時(shí)功率MOSFET前五個(gè)開關(guān)波形。 在變換器啟動(dòng)開始前,諧振電容和輸出電容剛好完全放電。與正常工作狀況相比,在啟動(dòng)過程中,這些空電容會(huì)使低端開關(guān)Q2的體二極管深度導(dǎo)通。因此流經(jīng)開關(guān) Q2體二極管的反向恢復(fù)電流非常高,致使當(dāng)高端開關(guān) Q1導(dǎo)通時(shí)足夠引起直通問題。啟動(dòng)狀態(tài)下,在體二極管 反向恢復(fù)時(shí),非常可能發(fā)生功率MOSFET的潛在失效。 圖5給出了LLC諧振半橋變換器啟動(dòng)時(shí)的簡(jiǎn)化波形。

圖6給出了可能出現(xiàn)潛在器件失效的工作模式。在t0~t1時(shí) 段,諧振電感電流Ir變?yōu)檎S捎贛OSFET Q1處于導(dǎo)通 狀態(tài),諧振電感電流流過MOSFET Q1 溝道。當(dāng)Ir開始上 升時(shí),次級(jí)二極管D1導(dǎo)通。因此,式3給出了諧振電感 電流Ir的上升斜率。因?yàn)閱?dòng)時(shí)vc(t)和vo(t)為零,所有的 輸入電壓都施加到諧振電感Lr的兩端。這使得諧振電流劇增。

pYYBAGLxwt-ATwCMAAB87Izeeb4808.jpg

在t1~ t 2時(shí)段,MOSFET Q1門極驅(qū)動(dòng)信號(hào)關(guān)斷,諧振電感 電流開始流經(jīng)MOSFET Q2的體二極管,為MOSFET Q2產(chǎn)生 ZVS條件。這種模式下應(yīng)該給MOSFET Q2施門極信號(hào)。由 于諧振電流的劇增,MOSFET Q2體二極管中的電流比正 常工作狀況下大很多。導(dǎo)致了MOSFET Q2的P-N結(jié)上存儲(chǔ) 更多電荷。

在t2~t3時(shí)段,MOSFET Q2施加門極信號(hào),在t0~t1時(shí)段 劇增的諧振電流流經(jīng)MOSFET Q2溝道。由于二極管D1 依然導(dǎo)通,該時(shí)段內(nèi)諧振電感的電壓為:

poYBAGLxwt-AAdOeAAALf5SAWMs694.png

該電壓使得諧振電流ir(t)下降。然而,

pYYBAGLxwt-AKjL0AAAIUmgrXak071.png

很小,并不足以在這個(gè)時(shí)間段 內(nèi)使電流反向。在t3時(shí)刻,MOSFET Q2電流依然從源 極流向漏極。另外,MOSFET Q2的體二極管不會(huì)恢復(fù),因?yàn)槁┰礃O之間沒有反向電壓。下式給出了諧振 電感電流Ir的上升斜率:

poYBAGLxwuCAZFolAAAJL8RCO7M469.png

在t3~t4時(shí)段,諧振電感電流經(jīng)MOSFET Q2體二極管續(xù) 流。盡管電流不大,但依然給MOSFET Q2的P-N結(jié)增加 儲(chǔ)存電荷。

在t4~t5時(shí)段,MOSFET Q1通道導(dǎo)通,流過非常大的直 通電流,該電流由MOSFET Q2體二極管的反向恢復(fù)電 流引起。這不是偶然的直通,因?yàn)楦摺⒌投薓OSFET正 常施加了門極信號(hào);如同直通電流一樣,它會(huì)影響到該 開關(guān)電源。這會(huì)產(chǎn)生很大的反向恢復(fù)dv/dt,有時(shí)會(huì)擊穿 MOSFET Q2。這樣就會(huì)導(dǎo)致MOSFET失效,并且當(dāng)采 用的MOSFET體二極管的反向恢復(fù)特性較差時(shí),這種失 效機(jī)理將會(huì)更加嚴(yán)重。

pYYBAGLxwuCAKBi1AABHwz3tu6k924.jpg

poYBAGLxwuCAfFKkAAA_cw7cnkg344.jpg

pYYBAGLxwuCALH9QAAA_cV4eTSw151.jpg

poYBAGLxwuGAJPEdAAALf5SAWMs729.png

pYYBAGLxwuGAeyOXAABjsJeascM025.jpg

過載失效模式

pYYBAGLxwuKATrBHAACgH2RYkBU207.jpg

圖7給出了不同負(fù)載下LLC諧振變換器的直流增益特性 曲線。根據(jù)不同的工作頻率和負(fù)載可以分為三個(gè)區(qū)域。 諧振頻率fr1的右側(cè)(藍(lán)框)表示ZVS區(qū)域,空載時(shí)小 第二諧振頻率fr2的左側(cè)(紅框)表示ZCS區(qū)域,fr1和fr2 之間的可能是ZVS或者ZCS,由負(fù)載狀況決定。所以紫 色的區(qū)域表示感性負(fù)載,粉色的區(qū)域表示容性負(fù)載。圖 8給出了感性和容性負(fù)載下簡(jiǎn)化波形。當(dāng)開關(guān)頻率 fs

poYBAGLxwuKAUNvmAAC-pczMpWQ896.jpg

MOSFET在零電流處關(guān)斷。在MOSFET開通前,電流流 過另一個(gè)MOSFET的體二極管。當(dāng)MOSFET開關(guān)開通, 另一個(gè)MOSFET體二極管的反向恢復(fù)應(yīng)力很大。由于大 反向恢復(fù)電流尖峰不能夠流過諧振電路,它將流過另一個(gè)MOSFET。這就會(huì)產(chǎn)生很大的開關(guān)損耗,并且電流和 電壓尖峰能夠造成器件失效。因此,變換器需要避免工 作在這個(gè)區(qū)域。

電子元器件現(xiàn)貨上唯樣商城

對(duì)于開關(guān)頻率fs>fr1,諧振電路的輸入阻抗為感性。MOSFET電流在開通后為負(fù),關(guān)斷前為正。MOSFET開 關(guān)在零電壓處開通。因此,不會(huì)出現(xiàn)米勒效應(yīng)從而使開 通損耗小化。MOSFET的輸入電容不會(huì)因米勒效應(yīng)而 增加。而且體二極管的反向恢復(fù)電流是正弦波形的一部 分,并且當(dāng)開關(guān)電流為正時(shí),會(huì)成為開關(guān)電流的一部 分。因此,通常ZVS優(yōu)于ZCS,因?yàn)樗梢韵煞聪?恢復(fù)電流、結(jié)電容放電引起的主要的開關(guān)損耗和應(yīng)力。

圖9給出了過載情況下工作點(diǎn)移動(dòng)軌跡。變換器正常工 作在ZVS區(qū)域,但過載時(shí),工作點(diǎn)移動(dòng)到ZCS區(qū)域,并 且串聯(lián)諧振變換器特性成為主導(dǎo)。過載情況下,開關(guān)電 流增加,ZVS消失,Lm被反射負(fù)載RLOAD完全短路。

這種情況通常會(huì)導(dǎo)致變換器工作在ZCS區(qū)域。ZCS(諧振 點(diǎn)以下)嚴(yán)重的缺點(diǎn)是:開通時(shí)為硬開關(guān),從而導(dǎo)致 二極管反向恢復(fù)應(yīng)力。此外,還會(huì)增加開通損耗,產(chǎn)生 噪聲或EMI。

pYYBAGLxwuKARV80AACUKNUdHKo350.jpg

二極管關(guān)斷伴隨非常大的dv/dt,因此在很大的di/dt條件 下,會(huì)產(chǎn)生很高的反向恢復(fù)電流尖峰。這些尖峰會(huì)比穩(wěn) 態(tài)開關(guān)電流幅值大十倍以上。該大電流會(huì)使MOSFET損 耗大大增加、發(fā)熱嚴(yán)重。MOSFET結(jié)溫的升高會(huì)降低其 dv/dt的能力。在極端情況下,損壞MOSFET,使整個(gè)系 統(tǒng)失效。在特殊應(yīng)用中,負(fù)載會(huì)從空載突變到過載,為 了能夠保持系統(tǒng)可靠性,系統(tǒng)應(yīng)該能夠在更惡劣的工作 環(huán)境中運(yùn)行。

poYBAGLxwuKAO3FcAACMTiWATik939.jpg

pYYBAGLxwuOAALv9AABdjhKlMuA411.jpg

poYBAGLxwuOAR1o4AACt8B9t8cA189.jpg

圖10和圖11給出了過載時(shí)功率MOSFET開關(guān)波形。電流 尖峰發(fā)生在開通和關(guān)斷的瞬間。可以被認(rèn)作是一種“暫 時(shí)直通”。圖12給出了過載時(shí)LLC諧振變換器的簡(jiǎn)化波 形,圖13給出了可能導(dǎo)致器件潛在失效問題的工作模式。

在t0 ~ t1時(shí)段,Q1導(dǎo)通,諧振電感電流Ir為正。由于 MOSFET Q1處于導(dǎo)通狀態(tài),諧振電流流過MOSFET Q1 溝道,次級(jí)二極管D1導(dǎo)通。Lm不參與諧振,Cr與Lr諧 振。能量由輸入端傳送到輸出端。

在t1 ~ t2時(shí)段,Q1門極驅(qū)動(dòng)信號(hào)開通,Q2關(guān)斷,輸出電 流在t1時(shí)刻為零。兩個(gè)電感電流Ir 和 Im相等。次級(jí)二極 管都不導(dǎo)通,兩個(gè)輸出二極管反向偏置。能量從輸出電 容而不是輸入端往外傳輸。因?yàn)檩敵龆伺c變壓器隔離, Lm與Lr串聯(lián)參與諧振。

在t2 ~ t3時(shí)段,MOSFET Q1 依然施加門極信號(hào),Q2關(guān) 斷。在這個(gè)時(shí)段內(nèi),諧振電感電流方向改變。電流從 MOSFET Q2的源極流向漏極。D2開始導(dǎo)通,D1反向偏 置,輸出電流開始增加。能量回流到輸入端。

在t3 ~ t4時(shí)段,關(guān)斷MOSFET Q1和Q2的門極信號(hào),諧振 電感電流開始流過MOSFET Q2的體二極管,這就為 MOSFET Q1創(chuàng)造了ZCS條件。

在t4 ~ t5時(shí)段,MOSFET Q2開通,流過一個(gè)很大的直通 電流,該電流由MOSFET Q1體二極管的反向恢復(fù)電流 產(chǎn)生。這不是偶然的直通,因?yàn)楦摺⒌投薓OSFET正常 施加了門極信號(hào);有如直通電流一樣,它會(huì)影響到該開 關(guān)電源。這會(huì)形成很高的反向恢復(fù)dv/dt,時(shí)常會(huì)擊穿 MOSFET Q2。這樣就會(huì)導(dǎo)致MOSFET失效,當(dāng)使用的 MOSFET體二極管的反向恢復(fù)特性較差時(shí),這種失效機(jī) 理會(huì)更加嚴(yán)重。

pYYBAGLxwuOACBnSAACAC-85haY386.jpg

poYBAGLxwuSAbkhFAACMV0FaaqY094.jpg

pYYBAGLxwuSAUsNbAABeg1UjZ60549.jpg

短路失效模式

最壞情況為短路。短路時(shí),MOSFET導(dǎo)通電流非常高 (理論上無限高),頻率也會(huì)降低。當(dāng)發(fā)生短路時(shí),諧 振回路中Lm被旁路。LLC諧振變換器可以簡(jiǎn)化為由Cr和 Lr組成的諧振電路,因?yàn)镃r只與Lr發(fā)生諧振。因此圖12 省略了t1 ~ t2時(shí)段,短路時(shí)次級(jí)二極管在CCM模式下連續(xù) 導(dǎo)通。短路狀態(tài)下工作模式幾乎與過載狀態(tài)下一樣,但 是短路狀態(tài)更糟糕,因?yàn)榱鹘?jīng)開關(guān)體二極管的反向恢復(fù) 電流更大。

poYBAGLxwuSANPFbAACFPXYNehg859.jpg

pYYBAGLxwuSABcZCAABGor6xSgM244.jpg

圖14和圖15給出了短路時(shí)功率MOSFET的開關(guān)波形。短 路的波形與過載下的波形類似,但是其電流的等級(jí)更 高,MOSFET結(jié)溫度更高,更容易失效。

功率MOSFET失效機(jī)理

體二極管反向恢復(fù)dv/dt

二極管由通態(tài)到反向阻斷狀態(tài)的開關(guān)過程稱為反向恢 復(fù)。圖16給出了MOSFET體二極管反向恢復(fù)的波形。首 先體二極管正向?qū)ǎ掷m(xù)一段時(shí)間。這個(gè)時(shí)段中,二 極管P-N結(jié)積累電荷。當(dāng)反向電壓加到二極管兩端時(shí), 釋放儲(chǔ)存的電荷,回到阻斷狀態(tài)。釋放儲(chǔ)存電荷時(shí)會(huì)出 現(xiàn)以下兩種現(xiàn)象:流過一個(gè)大的反向電流和重構(gòu)。在該 過程中,大的反向恢復(fù)電流流過MOSFET的體二極管, 是因?yàn)镸OSFET的導(dǎo)通溝道已經(jīng)切斷。一些反向恢復(fù)電 流從N+源下流過。

poYBAGLxwuWAZbXnAABylMrUP-8421.jpg

pYYBAGLxwuWAVaI6AABsT6QkESg766.jpg

poYBAGLxwuWAKVSPAAB2WmERZTg984.png

pYYBAGLxwuWACh4GAAA01Tiu0o4596.jpg

如圖18和圖19所示,Rb表示一個(gè)小電阻。基本上,寄生 BJT的基極和發(fā)射極被源極金屬短路。因此,寄生BJT 不能被激活。然而實(shí)際中,這個(gè)小電阻作為基極電阻, 當(dāng)大電流流過Rb時(shí),Rb產(chǎn)生足夠的壓降使寄生BJT基極發(fā)射極正向偏置,觸發(fā)寄生BJT。一旦寄生BJT開通, 會(huì)產(chǎn)生一個(gè)熱點(diǎn),更多的電流將涌入該點(diǎn)。負(fù)溫度系數(shù) 的BJT會(huì)使流過的電流越來越高。終導(dǎo)致器件失效。 圖17給出了體二極管反向恢復(fù)時(shí)MOSFET失效波形。電 流等級(jí)超過反向恢復(fù)電流峰值Irm時(shí)正好使器件失效。這 意味著峰值電流觸發(fā)了寄生BJT。圖20和圖21給出了由 體二極管反向恢復(fù)引起芯片失效的燒毀標(biāo)記。燒毀點(diǎn)是 芯片脆弱的點(diǎn),很容易就會(huì)形成熱點(diǎn),或者需要恢復(fù) 過多儲(chǔ)存電荷。這取決于芯片設(shè)計(jì),不同設(shè)計(jì)技術(shù)會(huì)有 所變化。

poYBAGLxwuaAB47-AACJl3gWakU046.jpg

pYYBAGLxwuaABB48AABm-Y-qFz8192.jpg

pYYBAGLxwuaAcgiMAAAZ0VSNdrE638.png

poYBAGLxwueAPyG0AACGwOXLge4105.jpg

如果反向恢復(fù)過程開始前P-N結(jié)溫度高于室溫,則更容 易形成熱點(diǎn)。所以電流等級(jí)和初始結(jié)溫度是器件失效的 兩個(gè)重要的因素。影響反向恢復(fù)電流峰值的主要因素 有溫度、正向電流和di/dt。圖22給出了反向恢復(fù)電流峰 值與正向電流等級(jí)的對(duì)應(yīng)曲線。如圖22所示,大限度 抑制體二極管導(dǎo)通,可以降低反向恢復(fù)電流峰值。如果 di/dt增大,反向恢復(fù)電流峰值也增大。在LLC諧振變換 器中,功率MOSFET體二極管的di/dt與另一互補(bǔ)功率開 關(guān)的開通速度有關(guān)。所以降低其開通速度也可以減小 di/dt。

擊穿dv/dt

另一種失效模式是擊穿dv/dt。它是擊穿和靜態(tài)dv/dt的組 合。功率器件同時(shí)承受雪崩電流和位移電流。如果開關(guān) 過程非常快,在體二極管反向恢復(fù)過程中,漏源極電壓 可能超過大額定值。例如,在圖16中,漏源極電壓 大值超過了570V ,但器件為500V 額定電壓的 MOSFET。過高的電壓峰值使MOSFET進(jìn)入擊穿模式, 位移電流通過P-N結(jié)。這就是雪崩擊穿的機(jī)理。另外, 過高的dv/dt會(huì)影響器件的失效點(diǎn)。dv/dt越大,建立起的 位移電流就越大。位移電流疊加到雪崩電流后,器件受 到傷害,導(dǎo)致失效。基本上,導(dǎo)致失效的根本原因是大 電流、高溫度引起的寄生BJT導(dǎo)通,但主要原因是體二 極管反向恢復(fù)或擊穿。實(shí)踐中,這兩種失效模式隨機(jī)發(fā)生,有時(shí)同時(shí)發(fā)生。

解決方法

在啟動(dòng)、過載或短路狀況下,過流保護(hù)方法有多種:

■增加開關(guān)頻率

■變頻控制以及 PWM控制

■采用分裂電容和鉗位二極管

為了實(shí)現(xiàn)這些方法,LLC諧振變換器需要增加額外的器件、改進(jìn)控制電路或者重新進(jìn)行散熱設(shè)計(jì),這都增加了系統(tǒng)的成本。有一種更為簡(jiǎn)單和高性價(jià)比的方法。由于體二極管在LLC諧振變換器中扮演了很重要的角色,它對(duì)失效機(jī)理至關(guān)重要,所以集中研究器件的體二極管特性是解決這個(gè)問題的好方法。越來越多的應(yīng)用使用內(nèi)嵌二極管作為關(guān)鍵的系統(tǒng)元件,因此體二極管的許多優(yōu)勢(shì)得以實(shí)現(xiàn)。其中,金或鉑擴(kuò)散和電子輻射是非常有效的 解決方法。這種方法可以控制載流子壽命,從而減少反 向恢復(fù)充電和反向恢復(fù)時(shí)間。隨著反向恢復(fù)充電的減 少,反向恢復(fù)電流峰值和觸發(fā)寄生BJT的可能性也隨之降低。因此,在過流情況下,如過載或短路,這種帶有 改進(jìn)的體二極管的新功率MOSFET可以提供更耐久、更好的保護(hù)。

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    147

    文章

    7198

    瀏覽量

    213614
  • 變換器
    +關(guān)注

    關(guān)注

    17

    文章

    2101

    瀏覽量

    109373
  • 失效模式
    +關(guān)注

    關(guān)注

    0

    文章

    22

    瀏覽量

    10195
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    如何避免MOSFET常見問題和失效模式

    今天給兄弟們分享一個(gè)infineon的文檔《使用功率MOSFET進(jìn)行設(shè)計(jì),如何避免常見問題和故障模式》,依然是我覺得比較好的。
    發(fā)表于 04-13 16:02 ?1230次閱讀

    LLC MOSFET失效模式

    上面介紹的失效機(jī)制,其實(shí)有很多應(yīng)對(duì)方法,簡(jiǎn)單的有選擇體二極管反向恢復(fù)特性較好的MOSFET,或者在電路上或電路架構(gòu)上進(jìn)行優(yōu)化,甚至有些芯片已經(jīng)集成了硬開關(guān)和容模保護(hù)等功能,這些就不詳細(xì)展開了。
    發(fā)表于 12-12 15:26

    MOSFET失效原因全分析

    MOSFET失效原因全分析
    發(fā)表于 03-04 23:17

    失效分析方法---PCB失效分析

    分析故障樹的方法: 針對(duì)PCB/PCBA的常見板級(jí)失效現(xiàn)象,我們通過建立各種失效模式的根因故障樹
    發(fā)表于 03-10 10:42

    電子書: 這么完整的LLC干貨, 不分享出來可惜了!

    幫助。目錄1這么完整的LLC原理講解,不分享出來可惜了!2牛人筆記!LLC諧振變換器中常見MOSFET失效模式分析
    發(fā)表于 07-02 16:37

    LLC諧振變換器中常見MOSFET失效模式有哪幾種?怎么解決?

    LLC諧振變換器中常見MOSFET失效模式有哪幾種?怎么解決?
    發(fā)表于 09-18 07:30

    失效分析中的模式思維方法

    失效分析中的模式思維方法:對(duì)事故模式失效模式的歸納
    發(fā)表于 12-18 11:28 ?34次下載

    LLC諧振變換器中常見MOSFET失效模式分析解決方法

    LLC諧振變換器可以突破傳統(tǒng)諧振變換器的局限。正是由于這些原因,LLC諧振變換器被廣泛應(yīng)用在電源供電市場(chǎng)。LLC諧振半橋變換器拓?fù)淙鐖D1所示,其典型波形如圖2所示。
    的頭像 發(fā)表于 06-23 19:25 ?1.1w次閱讀
    LLC諧振變換器中<b class='flag-5'>常見</b><b class='flag-5'>MOSFET</b><b class='flag-5'>失效</b><b class='flag-5'>模式</b>的<b class='flag-5'>分析</b>與<b class='flag-5'>解決方法</b>

    半導(dǎo)體集成電路失效分析原理及常見失效分析方法介紹!

    失效分析(FA)是一門發(fā)展中的新興學(xué)科,近年開始從軍工向普通企業(yè)普及。它一般根據(jù)失效模式和現(xiàn)象,通過分析和驗(yàn)證,模擬重現(xiàn)
    的頭像 發(fā)表于 04-18 09:11 ?3050次閱讀
    半導(dǎo)體集成電路<b class='flag-5'>失效</b><b class='flag-5'>分析</b>原理及<b class='flag-5'>常見</b><b class='flag-5'>失效</b><b class='flag-5'>分析</b><b class='flag-5'>方法</b>介紹!

    PCB接地設(shè)計(jì)規(guī)范

    文章轉(zhuǎn)載自:中興《PCB的接地設(shè)計(jì)》PCB的接地設(shè)計(jì)往期好文【1】汽車儀表,汽車電子產(chǎn)品防靜電元件推薦【2】電磁兼容基本知識(shí)及原理【收藏】【3】干貨|常見MOSFET失效模式
    的頭像 發(fā)表于 05-31 09:26 ?900次閱讀
    PCB接地設(shè)計(jì)規(guī)范

    干貨 | 常見MOSFET失效模式分析解決方法

    提高功率密度已經(jīng)成為電源變換器的發(fā)展趨勢(shì)。為達(dá)到這個(gè)目標(biāo),需要提高開關(guān)頻率,從而降低功率損耗、系統(tǒng)整體尺寸以及重量。對(duì)于當(dāng)今的開關(guān)電源(SMPS)而言,具有高可靠性也是非常重要的。零電壓開關(guān)(ZVS)或零電流開關(guān)(ZCS)拓?fù)湓试S采用高頻開關(guān)技術(shù),可以大限度地降低開關(guān)損耗。ZVS拓?fù)湓试S工作在高頻開關(guān)下,能夠改善效率,能夠降低應(yīng)用的尺寸,還能夠降低功率開關(guān)的
    的頭像 發(fā)表于 05-24 17:36 ?2225次閱讀
    干貨 | <b class='flag-5'>常見</b><b class='flag-5'>MOSFET</b><b class='flag-5'>失效</b><b class='flag-5'>模式</b>的<b class='flag-5'>分析</b>與<b class='flag-5'>解決方法</b>

    舵機(jī)常見的故障原因分析以及解決方法

    舵機(jī)的分析方法和注意事項(xiàng),以及對(duì)舵機(jī)常見故障的解決方法進(jìn)行一個(gè)列舉。
    的頭像 發(fā)表于 09-22 10:14 ?3922次閱讀
    舵機(jī)<b class='flag-5'>常見</b>的故障原因<b class='flag-5'>分析</b>以及<b class='flag-5'>解決方法</b>

    鋰電池失效原因及解決方法

    鋰電池失效原因及解決方法? 鋰電池是一種常見的充電電池類型,具有高能量密度、長(zhǎng)壽命和輕量化的優(yōu)點(diǎn)。然而,隨著使用時(shí)間的增長(zhǎng),鋰電池可能會(huì)出現(xiàn)失效的情況。鋰電池
    的頭像 發(fā)表于 12-08 15:47 ?2733次閱讀

    邏輯分析儀的常見故障及解決方法

    邏輯分析儀作為數(shù)字電路信號(hào)分析的關(guān)鍵工具,其穩(wěn)定運(yùn)行對(duì)于確保測(cè)試結(jié)果的準(zhǔn)確性至關(guān)重要。然而,在使用過程中,可能會(huì)遇到一些常見故障。以下是對(duì)這些故障及其解決方法的詳細(xì)探討,以及一些預(yù)防故
    的頭像 發(fā)表于 10-12 15:43 ?694次閱讀

    電動(dòng)工具的失效模式分析

    常見失效模式分析
    發(fā)表于 12-30 14:13 ?0次下載
    主站蜘蛛池模板: 日本成熟bbxxxxxxxx| 97人人看碰人免费公开视频| 午夜片无码区在线观看| 亚洲免费片| 中文字幕在线永久| 伧理片午夜伧理片| 国产亚洲精品字幕在线观看| 久久综合狠狠综合久久综合88| 啪啪漫画无遮挡全彩h网站| 午夜dj影院视频观看| 最新国产麻豆精品| 国产成人ae在线观看网站站| 精子pk美女| 日韩男明星| 在线 自拍 综合 亚洲 欧美| 高清国语自产拍在线| 久久久亚洲国产精品主播 | 成人精品综合免费视频| 国产专区_爽死777| 欧美特级午夜一区二区三区| 亚洲国产在线午夜视频无| bt天堂午夜国产精品| 韩国伦理片2018在线播放免费观看| 欧美末成年videos丨| 亚洲无线观看国产| 闺蜜扒开我尿口使劲揉| 伦理片2499电影伦理片| 香蕉AV福利精品导航| qovd伦理| 久久伊人精品青青草原2021| 视频一区亚洲视频无码| 97在线播放| 精品午夜视频| 视频区 国产 欧美 日韩| 99re热视频这里只有精品| 狠狠狠狠狠狠干| 神马电影院午夜神福利在线观看| 337p欧洲亚大胆精品| 国语自产精品一区在线视频观看 | 欧美多人群p刺激交换电影| 亚洲精品国产AV成人毛片|