光學顯微鏡憑借其非接觸、無損傷等優(yōu)點,成為生物學家研究細胞功能結(jié)構(gòu)、蛋白網(wǎng)絡(luò)結(jié)構(gòu)、DNA等遺傳物質(zhì)、細胞器以及膜結(jié)構(gòu)等應(yīng)用必不可少的工具,然而衍射極限的存在,使得人們無法清晰地觀察到橫向尺寸小于200nm、軸向尺寸小于500nm的細胞結(jié)構(gòu)。二十一世紀初期,具有納米尺度分辨率的超分辨光學顯微成像技術(shù)的出現(xiàn),使得研究人員可以在更高的分辨率水平進行生物研究。在超分辨顯微技術(shù)飛速發(fā)展的同時,現(xiàn)有成像技術(shù)的缺陷也日益顯現(xiàn),例如成像分辨率和成像時間不可兼得;對透鏡制造技術(shù)提出了一定要求的同時,也限制了觀測的視野;日益復雜的設(shè)備使得操作和維護也越來越困難等。
為解決上述問題,美國Double Helix Optics公司提出了納米級分辨率成像的新概念-“SPINDLE”,不僅突破了衍射極限,還可以實現(xiàn)三維成像,可捕捉到小至橫向尺寸10 nm、軸向尺寸15 nm的細節(jié)。在該技術(shù)中,SPINDLE模塊被安裝在顯微鏡和ccd或相機之間,無需改變現(xiàn)有成像系統(tǒng)設(shè)置?;谔厥庠O(shè)計的相位掩模版,從工程化點擴散函數(shù) (E-PSF)出發(fā),使用螺旋相位掩模板來控制景深、發(fā)射波長和精度,結(jié)合3DTRAX軟件對3D圖像進行重建和分析,可在不需要掃描的條件下即時捕獲 3D 信息,得到無與倫比的深度和精度3D圖像,橫向精度可達20nm, 軸向精度可達25nm,成像深度可達20um。當與其他工具和技術(shù),包括STORM、PALM、SOFI、光片顯微、寬場、寬場顯微、TIRF、FRET等一起使用時,可釋放巨大的潛力,適用于活細胞、固定細胞和全細胞成像、單分子、粒子跟蹤和粒子計數(shù)等應(yīng)用。
圖1:SPINDLE2雙通道顯微鏡模塊,用于同時多色、多深度3D成像
SPINDLE2可以被很容易地安裝到現(xiàn)有顯微鏡和CCD或相機之間,內(nèi)置旁路模式可輕松返回到非3D光路,是實現(xiàn)單發(fā)超分辨和3D寬場成像的理想解決方案。
圖2:非洲綠猴腎細胞的3D 圖像,微管和肌動蛋白分別標記,兩種顏色同時成像
在SPINDLE模塊中,最核心的是經(jīng)過特殊設(shè)計的相位掩模板,其尺寸和設(shè)計需和光學系統(tǒng)和成像條件相匹配。這些相位掩模板將單一物體發(fā)出的光分裂成兩個獨立的旋轉(zhuǎn)的光瓣,類似于雙螺旋。兩瓣的中點對應(yīng)物體發(fā)光源的橫向位置,兩瓣的夾角對應(yīng)發(fā)光源的軸向位置。由于旋轉(zhuǎn)180°時光斑可以保持聚焦,因此可以高精度地獲取發(fā)光“點”的深度信息。收集的數(shù)據(jù)由許多這些在不同方向上與物體橫向和軸向位置相對應(yīng)的分離良好的點組成。經(jīng)過對這些詳細的目標點數(shù)據(jù)集處理和圖像重建創(chuàng)建,即可得到超高分辨率原始物體清晰的三維結(jié)構(gòu)。
圖3:工程化相位掩模板通過每幀成像更大的體積來節(jié)省時間和存儲空間,并降低感光度
豐富多樣的相位掩模板庫,包括雙螺旋,單螺旋,EDOF,四足,和多色設(shè)計以提供最大的控制和靈活性。用戶可依據(jù)深度范圍、波長和其他光學參數(shù)選擇合適的相位掩模版以滿足最佳的深度-精度平衡。
3DTRAX? 軟件用于計算每個粒子的z位置,運行專有算法以自動進行3D定位,以?20 nm的深度和分辨率渲染高精度3D圖像,用于單分子定位和跟蹤。對漂移進行自動校正并生成直觀的繪圖,同時保持高數(shù)據(jù)質(zhì)量。
圖4:3DTRAX?是非常易于使用的斐濟插件
使用適用于 Windows、MacOS 和 Linux 的庫集成到您的工作流程或 OEM 儀器中,以 ThunderSTORM 或雙螺旋文件格式保存圖像并導出文件以供進一步分析,專有的反卷積算法可以在不損失精度的情況下重建全細胞圖像。
圖5:從左到右:非洲綠猴腎細胞的細胞骨架,小鼠胚胎成纖維細胞中的微管,小鼠胚胎成纖維細胞細胞核中的復制DNA的3D超分辨圖像
超分辨顯微鏡3D成像模塊應(yīng)用
超分辨顯微成像和3D粒子跟蹤技術(shù)為生物學和生物醫(yī)學研究、藥物發(fā)現(xiàn)、材料科學研究和工業(yè)檢測打開了一個充滿可能性的新世界。雙螺旋工程技術(shù)具有高達傳統(tǒng)顯微鏡30倍的成像深度,其為超分辨成像帶來了最好的精度-深度平衡。在3D粒子追蹤應(yīng)用中,雙螺旋工程帶來的擴展的深度可以實現(xiàn)更長粒子軌跡的捕獲。
在生命科學領(lǐng)域,雙螺旋光工程正在引領(lǐng)從癌癥和免疫學到傳染病和神經(jīng)科學的生命科學的突破。研究人員通過使用SPINDLE模塊發(fā)現(xiàn)了新的細胞結(jié)構(gòu)和亞細胞的相互作用。研究神經(jīng)退行性疾病的科學家們能夠看到以前從未見過的壓力顆粒核3D圖像。同樣,研究免疫學的研究人員已經(jīng)能夠重建整個T細胞。
在藥物開發(fā)領(lǐng)域,研究人員已經(jīng)可以看到和跟蹤藥物化合物的真正工作原理,而不是簡單地模擬新的化合物。雙螺旋光工程實現(xiàn)了在成像和單粒子跟蹤(SPT)領(lǐng)域的新突破,隨著追蹤分子的能力跨越更大的景深(高達20um),雙螺旋可以記錄比以往任何時候更長的軌跡,使得識別先導化合物和加快藥物發(fā)現(xiàn)變得更加容易。
在材料科學領(lǐng)域,借助3D納米成像和粒子跟蹤技術(shù),無論是金屬、半導體、陶瓷、聚合物還是納米材料研究,雙螺旋技術(shù)都可以讓您看到材料的結(jié)構(gòu)、流動性等性能。精密成像與深度擴展相結(jié)合,讓你對粒子動力學有了新的認識。有了更多的數(shù)據(jù),就可以更好地預測材料在任何給定應(yīng)用領(lǐng)域中的性能。
在工業(yè)檢測領(lǐng)域,雙螺旋工程可實現(xiàn)納米尺度的三維檢查?,F(xiàn)在你可以在從微芯片到像素級的產(chǎn)品中發(fā)現(xiàn)微小的缺陷和其他功能缺陷。納米級精度的檢測,可以提高質(zhì)量控制,節(jié)省時間,降低成本,提高產(chǎn)量和跟蹤質(zhì)量。
審核編輯:符乾江
-
顯微鏡
+關(guān)注
關(guān)注
0文章
578瀏覽量
23109 -
3D成像
+關(guān)注
關(guān)注
0文章
98瀏覽量
16129
發(fā)布評論請先 登錄
相關(guān)推薦
評論