色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

使用NVIDIA CUDA流順序內存分配器

星星科技指導員 ? 來源:NVIDIA ? 作者:NVIDIA ? 2022-04-21 15:39 ? 次閱讀

大多數 CUDA 開發人員都熟悉 cudaMalloc 和 cudaFree API 函數來分配 GPU 可訪問內存。然而,這些 API 函數長期以來一直存在一個障礙:它們不是按流排序的。在本文中,我們將介紹新的 API 函數 cudaMallocAsync 和 cudaFreeAsync ,它們使內存分配和釋放成為流式有序操作。

在 本系列的第 2 部分 中,我們通過共享一些大數據基準測試結果來強調這一新功能的好處,并為修改現有應用程序提供代碼 MIG 定量指南。我們還介紹了在多 GPU 訪問和 IPC 使用環境中利用流順序內存分配的高級主題。這一切都有助于提高現有應用程序的性能。

流排序效率

下面左邊的代碼示例效率低下,因為第一個 cudaFree 調用必須等待 kernelA 完成,所以它會在釋放內存之前同步設備。為了提高運行效率,可以預先分配內存,并將其調整為兩種大小中的較大值,如右圖所示。

cudaMalloc(&ptrA, sizeA);
kernelA<<<..., stream>>>(ptrA);
cudaFree(ptrA); // Synchronizes the
device before freeing memory
cudaMalloc(&ptrB, sizeB);
kernelB<<<..., stream>>>(ptrB);
cudaFree(ptrB);
cudaMalloc(&ptr,   max(sizeA, sizeB));
kernelA<<<...,   stream>>>(ptr);
kernelB<<<...,   stream>>>(ptr);
cudaFree(ptr); 

這增加了應用程序中的代碼復雜性,因為內存管理代碼與業務邏輯分離。當涉及到其他圖書館時,問題就更加嚴重了。例如,考慮kernelA由庫函數啟動的情況,而不是:

libraryFuncA(stream);
cudaMalloc(&ptrB, sizeB);
kernelB<<<..., stream>>>(ptrB);
cudaFree(ptrB);
  
void libraryFuncA(cudaStream_t stream) {
    cudaMalloc(&ptrA, sizeA);
    kernelA<<<..., stream>>>(ptrA);
    cudaFree(ptrA);
 } 

這對于應用程序來說要提高效率要困難得多,因為它可能無法完全查看或控制庫正在執行的操作。為了避免這個問題,庫必須在第一次調用該函數時分配內存,并且在庫被取消初始化之前永遠不會釋放內存。這不僅增加了代碼的復雜性,而且還會導致庫占用內存的時間超過需要的時間,從而可能會阻止應用程序的另一部分使用該內存。

有些應用程序通過實現自己的自定義分配器,進一步提前分配內存。這為應用程序開發增加了大量復雜性。 CUDA 旨在提供一種低工作量、高性能的替代方案。

CUDA 11 。 2 引入了流式有序內存分配器來解決這些類型的問題,并添加了 cudaMallocAsync 和 cudaFreeAsync 。這些新的 API 函數將內存分配從同步整個設備的全局作用域操作轉移到流順序操作,從而使您能夠將內存管理與 GPU 工作提交結合起來。這消除了同步未完成 GPU 工作的需要,并有助于將分配的生命周期限制為訪問它的 GPU 工作。考慮下面的代碼示例:

cudaMallocAsync(&ptrA, sizeA, stream);
kernelA<<<..., stream>>>(ptrA);
cudaFreeAsync(ptrA, stream); // No synchronization necessary
cudaMallocAsync(&ptrB, sizeB, stream); // Can reuse the memory freed previously
kernelB<<<..., stream>>>(ptrB);
cudaFreeAsync(ptrB, stream); 

現在可以在函數范圍內管理內存,如下面啟動kernelA的庫函數示例所示。

libraryFuncA(stream);
cudaMallocAsync(&ptrB, sizeB, stream); // Can reuse the memory freed by the library call
kernelB<<<..., stream>>>(ptrB);
cudaFreeAsync(ptrB, stream);
  
void libraryFuncA(cudaStream_t stream) {
    cudaMallocAsync(&ptrA, sizeA, stream);
    kernelA<<<..., stream>>>(ptrA);
    cudaFreeAsync(ptrA, stream); // No synchronization necessary
} 

流有序分配語義

所有常用的流排序規則都適用于 cudaMallocAsync 和 cudaFreeAsync 。從 cudaMallocAsync 返回的內存可以被任何內核或 memcpy 操作訪問,只要內核或 memcpy 被命令在分配操作之后和解除分配操作之前以流順序執行。解除分配可以在任何流中執行,只要命令在分配操作之后以及在 GPU 上對該內存的所有流進行所有訪問之后執行。

實際上,流順序分配的行為就像分配和自由是內核一樣。如果 kernelA 在流上生成有效緩沖區,并且 kernelB 在同一流上使其無效,則應用程序可以按照適當的流順序在 kernelA 之后和 kernelB 之前自由訪問緩沖區。

下面的示例顯示了各種有效用法。

auto err = cudaMallocAsync(&ptr, size, streamA);
// If cudaMallocAsync completes successfully, ptr is guaranteed to be
// a valid pointer to memory that can be accessed in stream order
  
assert(err == cudaSuccess);
  
// Work launched in the same stream can access the memory because
// operations within a stream are serialized by definition
  
kernel<<<..., streamA>>>(ptr);
  
// Work launched in another stream can access the memory as long as
// the appropriate dependencies are added
  
cudaEventRecord(event, streamA);
cudaStreamWaitEvent(streamB, event, 0);
kernel<<<..., streamB>>>(ptr);


// Synchronizing the stream at a point beyond the allocation operation
// also enables any stream to access the memory
  
cudaEventSynchronize(event);
kernel<<<..., streamC>>>(ptr);
  
// Deallocation requires joining all the accessing streams. Here,
// streamD will be deallocating.
// Adding an event dependency on streamB ensures that all accesses in
// streamB will be done before the deallocation
  
cudaEventRecord(event, streamB);
cudaStreamWaitEvent(streamD, event, 0);
  
// Synchronizing streamC also ensures that all its accesses are done before
// the deallocation
  
cudaStreamSynchronize(streamC);
cudaFreeAsync(ptr, streamD); 

圖 1 顯示了在前面的代碼示例中指定的各種依賴關系。如您所見,所有內核都被命令在分配操作之后執行,并在釋放操作之前完成。

Figure showing how to correctly access memory allocated using cudaMallocAsync.

圖 1 在流之間插入依賴關系的各種方法,以確保訪問使用 cudaMallocAsync.

內存分配和釋放不能異步失敗。由于調用 cudaMallocAsync 或 cudaFreeAsync (例如,內存不足)而發生的內存錯誤會通過調用返回的錯誤代碼立即報告。如果 cudaMallocAsync 成功完成,則返回的指針將保證是指向內存的有效指針,可以按照適當的流順序安全訪問。

err = cudaMallocAsync(&ptr, size, stream);
if (err != cudaSuccess) {
    return err;
}
// Now you’re guaranteed that ‘ptr’ is valid when the kernel executes on stream
kernel<<<..., stream>>>(ptr);
cudaFreeAsync(ptr, stream); 

CUDA 驅動程序使用內存池實現立即返回指針的行為。

內存池

流順序內存分配器將 存儲池 的概念引入 CUDA 。內存池是以前分配的內存的集合,可以重新用于將來的分配。在 CUDA 中,池由 cudaMemPool_t 句柄表示。每個設備都有一個默認池的概念,可以使用 cudaDeviceGetDefaultMemPool 查詢其句柄。

您還可以顯式創建自己的池,直接使用它們,或者將它們設置為設備的當前池,并間接使用它們。創建顯式池的原因包括自定義配置,如本文后面所述。當沒有顯式創建的池被設置為設備的當前池時,默認池將充當當前池。

在沒有顯式池參數的情況下調用 cudaMallocAsync 時,每次調用都會從指定的流推斷設備,并嘗試從該設備的當前池分配內存。如果池內存不足, CUDA 驅動程序將調用操作系統以分配更多內存。對 cudaFreeAsync 的每次調用都會將內存返回到池中,然后可在后續 cudaMallocAsync 請求中重新使用該內存。池由 CUDA 驅動程序管理,這意味著應用程序可以在多個庫之間實現池共享,而無需這些庫相互協調。

如果使用 cudaMallocAsync 發出的內存分配請求由于相應內存池的碎片而無法提供服務, CUDA 驅動程序通過將池中未使用的內存重新映射到 GPU 虛擬地址空間的連續部分來對池進行碎片整理。重新映射現有池內存而不是從操作系統分配新內存也有助于降低應用程序的內存占用。

默認情況下,在事件、流或設備上的下一次同步操作期間,池中累積的未使用內存將返回到操作系統,如下面的代碼示例所示。

cudaMallocAsync(ptr1, size1, stream); // Allocates new memory into the pool
kernel<<<..., stream>>>(ptr);
cudaFreeAsync(ptr1, stream); // Frees memory back to the pool
cudaMallocAsync(ptr2, size2, stream); // Allocates existing memory from the pool
kernel<<<..., stream>>>(ptr2);
cudaFreeAsync(ptr2, stream); // Frees memory back to the pool
cudaDeviceSynchronize(); // Frees unused memory accumulated in the pool back to the OS
// Note: cudaStreamSynchronize(stream) achieves the same effect here 

在池中保留內存

在某些情況下,將內存從池返回到系統可能會影響性能??紤]下面的代碼示例:

for (int i = 0; i < 100; i++) {
    cudaMallocAsync(&ptr, size, stream);
    kernel<<<..., stream>>>(ptr);
    cudaFreeAsync(ptr, stream);
    cudaStreamSynchronize(stream);
}

默認情況下,流同步會導致與該流的設備關聯的任何池將所有未使用的內存釋放回系統。在本例中,這將在每次迭代結束時發生。因此,沒有內存可供下次 cudaMallocAsync 調用重用,而必須通過昂貴的系統調用來分配內存。

為了避免這種昂貴的重新分配,應用程序可以配置一個釋放閾值,以使未使用的內存在同步操作之后保持不變。釋放閾值指定池緩存的最大內存量。在同步操作期間,它會將所有多余的內存釋放回操作系統。

默認情況下,池的釋放閾值為零。這意味著池中使用的內存在每次同步操作期間都會釋放回操作系統。下面的代碼示例演示如何更改釋放閾值。

cudaMemPool_t mempool;
cudaDeviceGetDefaultMemPool(&mempool, device);
uint64_t threshold = UINT64_MAX;
cudaMemPoolSetAttribute(mempool, cudaMemPoolAttrReleaseThreshold, &threshold);
for (int i = 0; i < 100; i++) {
    cudaMallocAsync(&ptr, size, stream);
    kernel<<<..., stream>>>(ptr);
    cudaFreeAsync(ptr, stream);
    cudaStreamSynchronize(stream);    // Only releases memory down to “threshold” bytes
} 

使用非零釋放閾值可以從一個迭代到下一個迭代重用內存。這只需要簡單的簿記,并使 cudaMallocAsync 的性能獨立于分配的大小,從而顯著提高了內存分配性能(圖 2 )。

Figure showing differences in cost of memory allocation with and without a release threshold.

圖 2 使用 cudaMallocAsync 設置和不設置釋放閾值(與 0 。 4MB 性能相關的所有值,閾值分配) 。

池閾值只是一個提示。在相同的內存池中[0]可以隱式釋放內存分配,以使內存分配成功。例如,對 cudaMalloc 或 cuMemCreate 的調用可能會導致 CUDA 從與同一進程中的設備關聯的任何內存池中釋放未使用的內存來為請求提供服務

這在應用程序使用多個庫的情況下尤其有用,其中一些庫使用 cudaMallocAsync ,而另一些庫不使用 cudaMallocAsync 。通過自動釋放未使用的池內存,這些庫不必相互協調以使各自的分配請求成功。

CUDA 驅動程序自動將內存從池重新分配給不相關的分配請求時存在限制。例如,應用程序可能使用不同的接口(如 Vulkan 或 DirectX )來訪問 GPU ,或者可能有多個進程同時使用 GPU 。這些上下文中的內存分配請求不會自動釋放未使用的池內存。在這種情況下,應用程序可能必須通過調用 cudaMemPoolTrimTo 顯式釋放池中未使用的內存。

size_t bytesToKeep = 0;
cudaMemPoolTrimTo(mempool, bytesToKeep); 

bytesToKeep 參數告訴 CUDA 驅動程序它可以在池中保留多少字節。任何超過該大小的未使用內存都會釋放回操作系統。

通過內存重用提高性能

cudaMallocAsync 和 cudaFreeAsync 的 stream 參數有助于 CUDA 高效地重用內存,避免對操作系統進行昂貴的調用??紤]下面的瑣碎代碼示例。

cudaMallocAsync(&ptr1, size1, stream);
kernelA<<<..., stream>>>(ptr1);
cudaFreeAsync(ptr1, stream);
cudaMallocAsync(&ptr2, size2, stream);
kernelB<<<..., stream>>>(ptr2); 

Figure showing how memory can be reused within a stream.

圖 3 同一流中的內存重用 。

在這個代碼示例中, ptr2 是在 ptr1 被釋放后按流順序分配的。 ptr2 分配可以重用用于 ptr1 的部分或全部內存,而無需任何同步,因為 kernelA 和 kernelB 在同一個流中啟動。因此,流排序語義保證 kernelB 在 kernelA 完成之前不能開始執行和訪問內存。通過這種方式, CUDA 驅動程序可以幫助降低應用程序的內存占用,同時提高分配性能。

CUDA 驅動程序還可以跟蹤通過 CUDA 事件插入的流之間的依賴關系,如以下代碼示例所示:

cudaMallocAsync(&ptr1, size1, streamA);
kernelA<<<..., streamA>>>(ptr1);
cudaFreeAsync(ptr1, streamA);
cudaEventRecord(event, streamA);
cudaStreamWaitEvent(streamB, event, 0);
cudaMallocAsync(&ptr2, size2, streamB);
kernelB<<<..., streamB>>>(ptr2); 

Figure showing how memory can be reused across dependent streams.

圖 4 跨流的內存重用,它們之間有事件依賴關系 。

由于 CUDA 驅動程序知道流 A 和 B 之間的依賴關系,因此它可以重用 ptr1 為 ptr2 使用的內存。流 A 和 B 之間的依賴關系鏈可以包含任意數量的流,如下面的代碼示例所示。

cudaMallocAsync(&ptr1, size1, streamA);
kernelA<<<..., streamA>>>(ptr1);
cudaFreeAsync(ptr1, streamA);
cudaEventRecord(event, streamA);
for (int i = 0; i < 100; i++) {
    cudaStreamWaitEvent(streams[i], event, 0);       // streams[] is a previously created array of streams
    cudaEventRecord(event, streams[i]);
}
cudaStreamWaitEvent(streamB, event, 0);
cudaMallocAsync(&ptr2, size2, streamB);
kernelB<<<..., streamB>>>(ptr2); 

如有必要,應用程序可以基于每個池禁用此功能:

int enable = 0;
cudaMemPoolSetAttribute(mempool, cudaMemPoolReuseFollowEventDependencies, &enable); 

CUDA 驅動程序還可以在沒有應用程序指定的顯式依賴項的情況下,有機會重用內存。雖然這種啟發式方法可能有助于提高性能或避免內存分配失敗,但它們會給應用程序增加不確定性,因此可以在每個池的基礎上禁用??紤]下面的代碼示例:

cudaMallocAsync(&ptr1, size1, streamA);
kernelA<<<..., streamA>>>(ptr1);
cudaFreeAsync(ptr1);
cudaMallocAsync(&ptr2, size2, streamB);
kernelB<<<..., streamB>>>(ptr2);
cudaFreeAsync(ptr2); 

在此場景中, streamA 和 streamB 之間沒有明確的依賴關系。但是, CUDA 驅動程序知道每個流執行了多遠。如果在第二次調用 streamB 中的 cudaMallocAsync 時, CUDA 驅動程序確定 kernelA 已在 GPU 上完成執行,則它可以重用 ptr1 用于 ptr2 的部分或全部內存。

Figure showing how memory can be reused opportunistically across streams.

圖 5 跨流的機會主義內存重用。

如果 kernelA 尚未完成執行, CUDA 驅動程序可以在兩個流之間添加隱式依賴項,以便 kernelB 在 kernelA 完成之前不會開始執行。

Figure showing how memory can be reused across streams through implicit dependencies added by the CUDA driver.

圖 6 通過內部依賴關系重用內存 。

應用程序可以按如下方式禁用這些啟發式:

int enable = 0;
cudaMemPoolSetAttribute(mempool, cudaMemPoolReuseAllowOpportunistic, &enable);
cudaMemPoolSetAttribute(mempool, cudaMemPoolReuseAllowInternalDependencies, &enable); 

概括

在本系列的第 1 部分中,我們介紹了新的 API 函數 cudaMallocAsync 和 cudaFreeAsync ,這兩個函數使內存分配和釋放成為流順序操作。使用它們可以避免通過 CUDA 驅動程序維護的內存池對操作系統進行昂貴的調用。

在 本系列的第 2 部分 中,我們分享了一些基準測試結果,以展示流順序內存分配的好處。我們還提供了一個逐步修改現有應用程序的方法,以充分利用此高級 CUDA 功能。

關于作者

Vivek Kini 是 NVIDIA 的高級系統軟件工程師。他致力于 CUDA 驅動程序,特別關注內存管理功能。他旨在簡化 CUDA 應用程序的內存管理,而不犧牲它們所需的性能。

Jake Hemstad 是一個高級開發工程師 NVIDIA ,他在開發高性能 CUDA C ++軟件加速數據分析。他同樣關心開發高質量的軟件,正如他實現最佳的 GPU 性能一樣,也是現代 C ++設計的倡導者。在 NVIDIA 之前,他參加了明尼蘇達大學的研究生院,在那里他與桑迪亞國家實驗室在任務并行 HPC 運行時間和稀疏線性求解器上工作。

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • NVIDIA
    +關注

    關注

    14

    文章

    5075

    瀏覽量

    103542
  • CUDA
    +關注

    關注

    0

    文章

    121

    瀏覽量

    13656
收藏 人收藏

    評論

    相關推薦

    PS2-185/NF帶狀線2路電源分配器

    PS2-185/NF帶狀線2路電源分配器PS2-185/NF帶狀線2路電源分配器具備高可靠性,通過不同種類的結構(如帶狀線、微帶和集總器件方式)來適合各種需求和應用。主要特性電氣性能頻率范圍
    發表于 01-08 09:23

    英邁質譜分配器:精準控制,引領質譜分析新高度

    在質譜分析這一精密科學領域,流體的精準輸送對于獲取高質量數據至關重要。為了滿足這一嚴苛需求,Instrumax(英邁儀器)憑借其在流體控制領域的深厚積累,推出了全新的質譜分配器。 這款質譜
    的頭像 發表于 12-26 14:14 ?142次閱讀

    CDCL1810 1.8V 10路輸出高性能時鐘分配器數據表

    電子發燒友網站提供《CDCL1810 1.8V 10路輸出高性能時鐘分配器數據表.pdf》資料免費下載
    發表于 08-22 11:14 ?0次下載
    CDCL1810 1.8V 10路輸出高性能時鐘<b class='flag-5'>分配器</b>數據表

    CDCE18005高性能時鐘分配器數據表

    電子發燒友網站提供《CDCE18005高性能時鐘分配器數據表.pdf》資料免費下載
    發表于 08-21 11:12 ?0次下載
    CDCE18005高性能時鐘<b class='flag-5'>分配器</b>數據表

    CDCE62005高性能時鐘發生器和分配器數據表

    電子發燒友網站提供《CDCE62005高性能時鐘發生器和分配器數據表.pdf》資料免費下載
    發表于 08-21 11:12 ?0次下載
    CDCE62005高性能時鐘發生器和<b class='flag-5'>分配器</b>數據表

    液壓分配器起什么作用的

    液壓分配器是一種用于控制液壓系統中液體流量和壓力的設備。它在許多工業和工程應用中發揮著重要作用,例如在液壓升降機、液壓挖掘機、液壓起重機等設備中。以下是液壓分配器的主要功能和原理: 流量控制 :液壓分配器
    的頭像 發表于 07-10 10:56 ?1101次閱讀

    液壓分配器工作原理是什么

    液壓分配器,又稱液壓多路閥,是液壓系統中的關鍵部件之一。它的作用是將液壓泵輸出的油液分配到各個執行機構,實現液壓系統的控制和調節。 一、液壓分配器的工作原理 液壓分配器的基本組成 液壓
    的頭像 發表于 07-10 10:55 ?2107次閱讀

    液壓分配器壓力調整方法有哪些

    液壓分配器,又稱液壓分配器或液壓分流器,是一種用于液壓系統中的設備,主要用于將液壓系統中的壓力油分配到各個執行元件,以實現對液壓系統的控制和調節。 一、液壓分配器壓力調整的重要性 液壓
    的頭像 發表于 07-10 10:53 ?2240次閱讀

    單線分配器與雙線分配器的區別是什么

    單線分配器與雙線分配器是兩種不同類型的電子設備,它們在通信、廣播、電視等領域中有著廣泛的應用。本文將介紹單線分配器與雙線分配器的區別。 一、定義 單線
    的頭像 發表于 07-10 10:44 ?1028次閱讀

    四路數據分配器的基本概念、工作原理、應用場景及設計方法

    四路數據分配器是一種數字電路元件,它的作用是將一個數據輸入信號分配成多個數據輸出信號。 1. 四路數據分配器的基本概念 四路數據分配器是一種多路復用器(Multiplexer),它將一
    的頭像 發表于 07-10 10:42 ?1936次閱讀

    八路數據分配器的基本概念及工作原理

    八路數據分配器是一種常見的電子設備,用于將一個輸入信號分配到多個輸出端。在本文中,我們將詳細介紹八路數據分配器的基本概念、工作原理、應用場景以及設計方法。 一、八路數據分配器的基本概念
    的頭像 發表于 07-10 10:40 ?2313次閱讀

    DS90LV110AT 1至10 LVDS數據/時鐘分配器數據表

    電子發燒友網站提供《DS90LV110AT 1至10 LVDS數據/時鐘分配器數據表.pdf》資料免費下載
    發表于 07-05 11:34 ?0次下載
    DS90LV110AT 1至10 LVDS數據/時鐘<b class='flag-5'>分配器</b>數據表

    Linux內核內存管理之slab分配器

    本文在行文的過程中,會多次提到cache或緩存的概念。如果沒有特殊在前面添加硬件的限定詞,就說明cache指的是slab分配器使用的軟件緩存的意思。如果添加了硬件限定詞,則指的是處理器的硬件緩存,比如L1-DCache、L1-ICache之類的。
    的頭像 發表于 02-22 09:25 ?1334次閱讀
    Linux內核<b class='flag-5'>內存</b>管理之slab<b class='flag-5'>分配器</b>

    Linux內核內存管理之ZONE內存分配器

    內核中使用ZONE分配器滿足內存分配請求。該分配器必須具有足夠的空閑頁幀,以便滿足各種內存大小請求。
    的頭像 發表于 02-21 09:29 ?937次閱讀

    請問為什么CAN不使用手動引腳分配器來更改引腳?

    了 Pin28 (P2.8) 使用手動引腳分配器,它起作用了, 然后想把 \" sync2 \" 從 Pin25 (P2.15) 改為 Pin1 (P0.1), 但是在手動引腳分配器
    發表于 01-30 07:24
    主站蜘蛛池模板: 国产精品乱码色情一区二区视频 | 亚洲欧洲日本天天堂在线观看 | 伊人久久精品中文字幕 | 日韩丰满少妇无码内射 | J午夜精品久久久久久毛片 jzz大全18 | 亚洲欧美色综合影院 | 777EY_卡通动漫_1页 | 亚洲国产系列一区二区三区 | 欧美成人中文字幕在线视频 | 亚洲 欧美 日韩 卡通 另类 | 国产热久久精 | 浴室里强摁做开腿呻吟的漫画男男 | 免费国产足恋网站 | 欧美另类与牲交ZOZOZO | ai换脸在线全集观看 | 99RE6国产精品视频播放 | 动漫美女被爆挤奶歪歪漫画 | 欧美老妇与zozoz0交 | 亚洲AV久久久久久久无码 | 国产人妻午夜无码AV天堂 | 美女大本营 | 无码丰满人妻熟妇区 | 中国大陆一级毛片免费 | 成人久久欧美日韩一区二区三区 | 又粗又大又爽又黄的免费视频 | 猫咪av永久最新域名 | 亚洲乱码中文字幕久久 | 武侠艳妇屈辱的张开双腿 | 自拍视频亚洲综合在线精品 | 邻家美姨在线观看全集免费 | 色宅男看片午夜大片免费看 | 色欲AV亚洲午夜精品无码 | 高清毛片一区二区三区 | 色欲蜜臀AV免费视频 | 娇妻在床上迎合男人 | 极品少妇高潮啪啪无码吴梦 | 久久99久久成人免费播放 | 亚洲无码小格式 | 6080YYY午夜理论片在线观看 | 香蕉精品国产高清自在自线 | 国产精品久久久久久免费播放 |