LSM tree (log-structured merge-tree) 是一種對頻繁寫操作非常友好的數據結構,同時兼顧了查詢效率。LSM tree 是許多 key-value 型或日志型數據庫所依賴的核心數據結構,例如 BigTable、HBase、Cassandra、LevelDB、SQLite、Scylla、RocksDB 等。
LSM tree 之所以有效是基于以下事實:磁盤或內存的連續讀寫性能遠高于隨機讀寫性能,有時候這種差距可以達到三個數量級之高。這種現象不僅對傳統的機械硬盤成立,對 SSD 硬盤也同樣成立。如下圖:
LSM tree 在工作過程中盡可能避免隨機讀寫,充分發揮了磁盤連續讀寫的性能優勢。
SSTable
LSM tree 持久化到硬盤上之后的結構稱為 Sorted Strings Table (SSTable)。顧名思義,SSTable 保存了排序后的數據(實際上是按照 key 排序的 key-value 對)。每個 SSTable 可以包含多個存儲數據的文件,稱為 segment,每個 segment 內部都是有序的,但不同 segment 之間沒有順序關系。一個 segment 一旦生成便不再修改(immutable)。一個 SSTable 的示例如下:
可以看到,每個 segment 內部的數據都是按照 key 排序的。下面我們來介紹每個 segment 是如何生成的。
寫入數據
LSM tree 的所有寫操作均為連續寫,因此效率非常高。但由于外部數據是無序到來的,如果無腦連續寫入到 segment,顯然是不能保證順序的。對此,LSM tree 會在內存中構造一個有序數據結構(稱為 memtable),例如紅黑樹。每條新到達的數據都插入到該紅黑樹中,從而始終保持數據有序。當寫入的數據量達到一定閾值時,將觸發紅黑樹的 flush 操作,把所有排好序的數據一次性寫入到硬盤中(該過程為連續寫),生成一個新的 segment。而之后紅黑樹便從零開始下一輪積攢數據的過程。
讀取/查詢數據
如何從 SSTable 中查詢一條特定的數據呢?一個最簡單直接的辦法是掃描所有的 segment,直到找到所查詢的 key 為止。通常應該從最新的 segment 掃描,依次到最老的 segment,這是因為越是最近的數據越可能被用戶查詢,把最近的數據優先掃描能夠提高平均查詢速度。
當掃描某個特定的 segment 時,由于該 segment 內部的數據是有序的,因此可以使用二分查找的方式,在
O(logn) 的時間內得到查詢結果。但對于二分查找來說,要么一次性把數據全部讀入內存,要么在每次二分時都消耗一次磁盤 IO,當 segment 非常大時(這種情況在大數據場景下司空見慣),這兩種情況的代價都非常高。一個簡單的優化策略是,在內存中維護一個稀疏索引(sparse index),其結構如下圖:
稀疏索引是指將有序數據切分成(固定大小的)塊,僅對各個塊開頭的一條數據做索引。與之相對的是全量索引(dense index),即對全部數據編制索引,其中的任意一條數據發生增刪均需要更新索引。兩者相比,全量索引的查詢效率更高,達到了理論極限值
O(logn),但寫入和刪除效率更低,因為每次數據增刪時均需要因為更新索引而消耗一次 IO 操作。通常的關系型數據庫,例如 MySQL 等,其內部采用 B tree 作為索引結構,這便是一種全量索引。
有了稀疏索引之后,可以先在索引表中使用二分查找快速定位某個 key 位于哪一小塊數據中,然后僅從磁盤中讀取這一塊數據即可獲得最終查詢結果,此時加載的數據量僅僅是整個 segment 的一小部分,因此 IO 代價較小。以上圖為例,假設我們要查詢 dollar 所對應的 value。首先在稀疏索引表中進行二分查找,定位到 dollar 應該位于 dog 和 downgrade 之間,對應的 offset 為 17208~19504。之后去磁盤中讀取該范圍內的全部數據,然后再次進行二分查找即可找到結果,或確定結果不存在。
稀疏索引極大地提高了查詢性能,然而有一種極端情況卻會造成查詢性能驟降:當要查詢的結果在 SSTable 中不存在時,我們將不得不依次掃描完所有的 segment,這是最差的一種情況。有一種稱為**布隆過濾器(bloom filter)**的數據結構天然適合解決該問題。布隆過濾器是一種空間效率極高的算法,能夠快速地檢測一條數據是否在數據集中存在。我們只需要在寫入每條數據之前先在布隆過濾器中登記一下,在查詢時即可斷定某條數據是否缺失。
布隆過濾器的內部依賴于哈希算法,當檢測某一條數據是否見過時,有一定概率出現假陽性(False Positive),但一定不會出現假陰性(False Negative)。也就是說,當布隆過濾器認為一條數據出現過,那么該條數據很可能出現過;但如果布隆過濾器認為一條數據沒出現過,那么該條數據一定沒出現過。這種特性剛好與此處的需求相契合,即檢驗某條數據是否缺失。
文件合并(Compaction)
隨著數據的不斷積累,SSTable 將會產生越來越多的 segment,導致查詢時掃描文件的 IO 次數增多,效率降低,因此需要有一種機制來控制 segment 的數量。對此,LSM tree 會定期執行文件合并(compaction)操作,將多個 segment 合并成一個較大的 segment,隨后將舊的 segment 清理掉。由于每個 segment 內部的數據都是有序的,合并過程類似于歸并排序,效率很高,只需要
O(n)O(n)的時間復雜度。
在上圖的示例中,segment 1 和 2 中都存在 key 為 dog 的數據,這時應該以最新的 segment 為準,因此合并后的值取 84 而不是 52,這實現了類似于字典/HashMap 中“覆蓋寫”的語義。
刪除數據
現在你已經了解了 LSM tree 讀寫數據的方式,那么如何刪除數據呢?如果是在內存中,刪除某塊數據通常是將它的引用指向 NULL,那么這塊內存就會被回收。但現在的情況是,數據已經存儲在硬盤中,要從一個 segment 文件中間抹除一段數據必須要覆寫其之后的所有內容,這個成本非常高。LSM tree 所采用的做法是設計一個特殊的標志位,稱為 tombstone(墓碑),刪除一條數據就是把它的 value 置為墓碑,如下圖所示:
這個例子展示了刪除 segment 2 中的 dog 之后的效果。注意,此時 segment 1 中仍然保留著 dog 的舊數據,如果我們查詢 dog,那么應該返回空,而不是 52。因此,刪除操作的本質是覆蓋寫,而不是清除一條數據,這一點初看起來不太符合常識。墓碑會在 compact 操作中被清理掉,于是置為墓碑的數據在新的 segment 中將不復存在。
LSM tree 與 B tree 的對比
主流的關系型數據庫均以 B/B+ tree 作為其構建索引的數據結構,這是因為 B tree 提供了理論上最高的查詢效率 O(log n)
O(logn)。但對查詢性能的追求也造成了 B tree 的相應缺點,即每次插入或刪除一條數據時,均需要更新索引,從而造成一次磁盤 IO。這種特性決定了 B tree 只適用于頻繁讀、較少寫的場景。如果在頻繁寫的場景下,將造成大量的磁盤 IO,從而導致性能驟降。這種應用場景在傳統的關系型數據庫中比較常見。
而 LSM tree 則避免了頻繁寫場景下的磁盤 IO 開銷,盡管其查詢效率無法達到理想的 O(log n)
O(logn),但依然非常快,可以接受。所以從本質上來說,LSM tree 相當于犧牲了一部分查詢性能,換取了可觀的寫入性能。這對于 key-value 型或日志型數據庫是非常重要的。
總結
LSM tree 存儲引擎的工作原理包含以下幾個要點:
寫數據時,首先將數據緩存到內存中的一個有序樹結構中(稱為 memtable)。同時觸發相關結構的更新,例如布隆過濾器、稀疏索引。
當 memtable 積累到足夠大時,會一次性寫入磁盤中,生成一個內部有序的 segment 文件。該過程為連續寫,因此效率極高。
進行查詢時,首先檢查布隆過濾器。如果布隆過濾器報告數據不存在,則直接返回不存在。否則,按照從新到老的順序依次查詢每個 segment。
在查詢每個 segment 時,首先使用二分搜索檢索對應的稀疏索引,找到數據所在的 offset 范圍。然后讀取磁盤上該范圍內的數據,再次進行二分查找并獲得結果。
對于大量的 segment 文件,定期在后臺執行 compaction 操作,將多個文件合并為更大的文件,以保證查詢效率不衰減。
責任編輯:haq
-
數據
+關注
關注
8文章
7134瀏覽量
89391 -
SSD
+關注
關注
21文章
2887瀏覽量
117685 -
過濾器
+關注
關注
1文章
432瀏覽量
19685
原文標題:一種對頻繁寫操作非常友好的數據結構(核心實現講解)
文章出處:【微信號:DBDevs,微信公眾號:數據分析與開發】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論