色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

大模型時(shí)代的AI之變與開發(fā)之根

腦極體 ? 來(lái)源:腦極體 ? 作者:腦極體 ? 2021-09-29 08:54 ? 次閱讀

自2018年谷歌發(fā)布Bert以來(lái),預(yù)訓(xùn)練大模型以強(qiáng)大的算法效果,席卷了NLP為代表的各大AI榜單與測(cè)試數(shù)據(jù)集。隨著產(chǎn)學(xué)研各界的深入研究,大模型在AI產(chǎn)學(xué)研各界的地位得到不斷加強(qiáng)。到2021年,我們可以看到各大學(xué)術(shù)機(jī)構(gòu)、科技企業(yè)都在打造自己的大模型,并且將其能力邊界、技術(shù)路徑進(jìn)行了極大拓展。

有人認(rèn)為,AI大模型的到來(lái)讓這項(xiàng)技術(shù)完成了從實(shí)驗(yàn)室到工業(yè)化集成的轉(zhuǎn)變。如果說(shuō)過(guò)去的AI開發(fā)需要手工作坊模式的調(diào)參、調(diào)優(yōu)、數(shù)據(jù)積累,那么大模型則預(yù)先集成了海量數(shù)據(jù)的訓(xùn)練效果,企業(yè)與科研用戶拿到手中就是一個(gè)“智力”強(qiáng)大、效果客觀的完成品。于是極大程度節(jié)省了重復(fù)開發(fā)成本,降低了開發(fā)門檻。

大模型的價(jià)值涌現(xiàn)出來(lái),下一個(gè)問(wèn)題隨之誕生:打造大模型需要人工智能算力、網(wǎng)絡(luò)、框架等一系列條件形成有效支撐,才能讓大模型真正“大”起來(lái)。大模型能夠持續(xù)發(fā)展的前提,是必須打造強(qiáng)壯的AI根技術(shù),在框架、算力等層面滿足大模型的“建造”需求。

不久之前,中科院自動(dòng)化所發(fā)布了全球首個(gè)三模態(tài)大模型——紫東.太初。

而這項(xiàng)技術(shù)成果的背后,是中科院自動(dòng)化所與華為攜手,利用全場(chǎng)景AI框架MindSpore對(duì)大模型開發(fā)進(jìn)行了一系列支撐。9月25日, 在華為全聯(lián)接2021上,MindSpore中文名“昇思”發(fā)布,同時(shí)推出昇思1.5版本。這一版本強(qiáng)化全場(chǎng)景能力、原生支持大模型,并新增AI科學(xué)計(jì)算新范式,發(fā)布電磁仿真套件和分子模擬套件,促進(jìn)AI應(yīng)用于科學(xué)計(jì)算領(lǐng)域。

ec8d5bc6dd014e8fbc2a29c104c8137c~tplv-tt-shrink:640:0.image

我們就借此機(jī)會(huì),聊聊大模型如何從昇思1.5中汲取營(yíng)養(yǎng);持續(xù)打造大模型,需要開發(fā)框架帶來(lái)怎樣的根技術(shù)支持。

時(shí)代的召喚:大模型推動(dòng)AI之變

預(yù)訓(xùn)練大模型發(fā)展到今天,已經(jīng)經(jīng)歷了三年多的時(shí)間。期間最具“出圈”效應(yīng)的大模型,可能就要屬2020年OpenAI發(fā)布的NLP大模型GPT-3。

GPT-3首次實(shí)現(xiàn)了千億級(jí)數(shù)據(jù)參數(shù),除了傳統(tǒng)的NLP能力之外,還可以算術(shù)、編程、寫小說(shuō)、寫論文摘要,一時(shí)之間成為輿論熱點(diǎn)。GPT-3的出現(xiàn),讓各界看到了大模型的潛力, 也讓中國(guó)開發(fā)自己的大模型成為了“時(shí)代的召喚”。

從產(chǎn)業(yè)價(jià)值上看,預(yù)訓(xùn)練大模型帶來(lái)了一系列可能性,讓產(chǎn)學(xué)研各界看到了由弱人工智能走向強(qiáng)人工智能;由重復(fù)開發(fā)、手工作坊式人工智能,走向工業(yè)化、集成化智能的全新路徑。可以說(shuō),大模型是近兩年AI持續(xù)變革的核心動(dòng)力,也是AI走入千行百業(yè)、各學(xué)科領(lǐng)域的關(guān)鍵支柱。

于是我們可以看到,中國(guó)的科技企業(yè)、學(xué)術(shù)科研機(jī)構(gòu)紛紛開始加碼大模型,并且在不同路徑上進(jìn)行探索和嘗試。比如說(shuō),Bert和GPT都是NLP領(lǐng)域的大模型,缺乏對(duì)圖形圖像數(shù)據(jù)與多模態(tài)數(shù)據(jù)的處理能力。因此,多模態(tài)大模型成為了重要的研究方向。集成語(yǔ)音、文本、圖像、視頻等各個(gè)模態(tài)信息的處理模式,也更加貼近人類感知,具有更高的社會(huì)價(jià)值。

對(duì)于產(chǎn)學(xué)各界來(lái)說(shuō),數(shù)據(jù)量大、訓(xùn)練效果好、網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)緊湊,同時(shí)又容易獲取的預(yù)訓(xùn)練大模型,都是未來(lái)學(xué)術(shù)研究、AI開發(fā)、產(chǎn)業(yè)升級(jí)的基礎(chǔ)和關(guān)鍵。大模型將很有可能改變AI的研究范式,成為不同領(lǐng)域的共性基礎(chǔ)平臺(tái)。

中科院自動(dòng)化所就瞄準(zhǔn)這一方向,成功構(gòu)建了視覺-文本-語(yǔ)音三模態(tài)預(yù)訓(xùn)練模型——紫東.太初。而在其背后,華為提供的昇思1.5框架的能力,成為了打造大模型的利劍。

駛向多模態(tài):紫東.太初的獨(dú)特價(jià)值

破混沌,開新局,紫東.太初這個(gè)極具魄力與東方文化質(zhì)感的名字屬于全球首個(gè)三模態(tài)大模型(OPT-Omni-Perception pre Trainer)。它能夠?qū)崿F(xiàn)圖文音語(yǔ)義的統(tǒng)一表達(dá),將視覺、文本、語(yǔ)音三種模態(tài)統(tǒng)一起來(lái),實(shí)現(xiàn)以文搜圖,以圖生音等跨模特理解與生成能力,這標(biāo)志著預(yù)訓(xùn)練模型工作獲得突破性進(jìn)展。

目前階段,產(chǎn)學(xué)研界最多的大模型就是NLP大模型,其次是CV大模型。而多模態(tài)大模型作為新生事物,基本也考慮的是兩個(gè)模態(tài)之間的協(xié)同轉(zhuǎn)化。比如圖像與文本、視頻與文本,并且能力更多是集中在生成或理解中的一項(xiàng),很少能夠兼顧。

紫東.太初為了解決這些問(wèn)題,提出了視覺-文本-語(yǔ)音三模態(tài)預(yù)訓(xùn)練模型。通過(guò)將視覺、文本、語(yǔ)音不同模態(tài)數(shù)據(jù)各自編碼器,映射到統(tǒng)一語(yǔ)義空間,然后通過(guò)多頭自注意力機(jī)制(Multi-head Self-attention)學(xué)習(xí)模態(tài)之間的語(yǔ)義關(guān)聯(lián)以及特征對(duì)齊,形成多模態(tài)統(tǒng)一知識(shí)表示,再利用編碼后的多模態(tài)特征,最終通過(guò)解碼器分別生成文本、圖像和語(yǔ)音。經(jīng)過(guò)這樣的對(duì)齊與轉(zhuǎn)化,大模型可以更加關(guān)注圖-文-音三模態(tài)數(shù)據(jù)之間的關(guān)聯(lián)特性以及跨模態(tài)轉(zhuǎn)換問(wèn)題,對(duì)更廣泛、更多樣的下游任務(wù)提供模型基礎(chǔ)支撐。最終,多模態(tài)大模型不僅可以實(shí)現(xiàn)跨模態(tài)理解,還能完成跨模態(tài)生成,極大程度提升了學(xué)習(xí)框架的靈活性,有效降低了多模態(tài)數(shù)據(jù)的收集與清洗成本。

由于三模態(tài)大模型非常接近人類的信息處理方式,其對(duì)信息數(shù)據(jù)有非常好的協(xié)同掌握能力,因此可以非常廣泛地應(yīng)用于產(chǎn)學(xué)各領(lǐng)域,孵化出更多新應(yīng)用。紫東.太初目前已經(jīng)具備全球領(lǐng)先的圖文音跨模態(tài)理解與生成能力,可輕松完成智能問(wèn)答、圖片生成、視頻理解與等任務(wù),這些能力將在工業(yè)質(zhì)檢、影視創(chuàng)作、互聯(lián)網(wǎng)推薦、智能駕駛等領(lǐng)域廣泛應(yīng)用。

而面向產(chǎn)業(yè)上游看,我們會(huì)發(fā)現(xiàn)紫東.太初的打造,得益于昇騰AI的產(chǎn)業(yè)底座。尤其是昇思對(duì)大模型的原生支持,讓大模型具備了快速開發(fā)、精準(zhǔn)訓(xùn)練的“開發(fā)之根”。

根強(qiáng)則AI強(qiáng):昇思支持大模型時(shí)代到來(lái)

在MindSpore 全新升級(jí)的1.5版本中,我們不僅見到了全新的中文名——昇思,更重要的是見到了昇思新版本對(duì)科學(xué)研究、AI基礎(chǔ)開發(fā)的全新適配能力,展現(xiàn)了昇騰AI產(chǎn)業(yè)對(duì)新銳產(chǎn)學(xué)動(dòng)向的洞察和滿足。

在科研工作中,AI開發(fā)經(jīng)常是一件成本巨大、容錯(cuò)率極低的工作。算力、數(shù)據(jù)、基礎(chǔ)模型和開發(fā)套件都會(huì)成為科研工作中的AI開發(fā)難題。面對(duì)這些問(wèn)題,昇思1.5不僅極大提升了對(duì)大模型的適配能力,還強(qiáng)化升級(jí)了科學(xué)計(jì)算引擎,全面加強(qiáng)了對(duì)學(xué)術(shù)界、工業(yè)界的AI開發(fā)支持。

在大模型支持方面,昇思1.5版本實(shí)現(xiàn)了原生支持大模型,能夠在業(yè)界率先支持全自動(dòng)并行AI處理。在大模型訓(xùn)練中,可以同時(shí)使用數(shù)據(jù)并行、算子級(jí)模型并行、Pipeline 模型并行、優(yōu)化器模型并行、異構(gòu)并行、重計(jì)算、高效內(nèi)存復(fù)用多維度、全種類的分布式并行策略;并且原創(chuàng)集群拓?fù)涓兄亩嗑S度自動(dòng)混合并行,實(shí)現(xiàn)超大模型自動(dòng)切分,顯著提升集群加速能力;新的 DNN分布式并行編程范式,可以實(shí)現(xiàn)低代碼算法切換,大幅節(jié)省開發(fā)時(shí)間。

面對(duì)結(jié)構(gòu)復(fù)雜、訓(xùn)練開銷巨大、訓(xùn)練時(shí)間漫長(zhǎng)的多模態(tài)大模型,新的昇思特性可以極大提升訓(xùn)練加速能力,同時(shí)減少系統(tǒng)性能優(yōu)化代價(jià),降低代碼開發(fā)工作力,從而綜合性地減少調(diào)試與訓(xùn)練周期。

在這樣的框架能力升級(jí)中,會(huì)有更多創(chuàng)新性強(qiáng)、訓(xùn)練數(shù)據(jù)規(guī)模大的預(yù)訓(xùn)練大模型在昇思的支撐下發(fā)展起來(lái)。昇思自然也就名副其實(shí)成為了大模型的“根技術(shù)”。

目前,基于昇思訓(xùn)練的大模型除了已經(jīng)發(fā)布的全球首個(gè)中文預(yù)訓(xùn)練大模型鵬程.盤古、全球首個(gè)三模型預(yù)訓(xùn)練大模型紫東.太初,還有即將發(fā)布的智能遙感大模型、語(yǔ)音大模型等等,可以說(shuō)昇思框架對(duì)大模型支持的能力是業(yè)界首屈一指的。

6aa0ef0f6c7a40188761646619ef7091~tplv-tt-shrink:640:0.image

與此同時(shí),昇思1.5還新增了對(duì)外開放機(jī)制等諸多新特性,尤其注重在科研創(chuàng)新和應(yīng)用領(lǐng)域的支持。通過(guò)多尺度混合計(jì)算和高階混合微分兩大關(guān)鍵創(chuàng)新,將原有的 AI 計(jì)算引擎升級(jí)為 AI 與科學(xué)計(jì)算的統(tǒng)一引擎,實(shí)現(xiàn)融合的統(tǒng)一加速。在此基礎(chǔ)上,未來(lái)昇思將面向 8 大科學(xué)計(jì)算場(chǎng)景推出 MindScience 系列套件。科學(xué)計(jì)算套件包含業(yè)界領(lǐng)先的數(shù)據(jù)集、基礎(chǔ)模型、預(yù)置高精度模型和前后處理工具,可以加速科學(xué)行業(yè)應(yīng)用開發(fā)。

昇思將持續(xù)加強(qiáng)對(duì)科研領(lǐng)域AI開發(fā)的支持,尤其是為大模型這種“國(guó)之重器”的訓(xùn)練底座。同時(shí),昇騰社區(qū)和昇思MindSpore社區(qū)也會(huì)加強(qiáng)對(duì)大模型開源開放的支持。目前,昇思社區(qū)下載量已經(jīng)突破60萬(wàn),社區(qū)貢獻(xiàn)者超過(guò)3500人。昇思正在與產(chǎn)學(xué)研各界一同推進(jìn)開源開放,讓大模型真正成為科學(xué)之基、產(chǎn)業(yè)之本。

預(yù)訓(xùn)練大模型正在推動(dòng)一場(chǎng)AI新變革。而在關(guān)注這場(chǎng)變革之前,我們更應(yīng)該關(guān)注根技術(shù)、根平臺(tái)的打造與建設(shè)。

堅(jiān)實(shí)的產(chǎn)業(yè)基礎(chǔ)之上,才能產(chǎn)學(xué)各界萬(wàn)花盛放。AI大模型之變,應(yīng)該有強(qiáng)壯的根。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4629

    瀏覽量

    93196
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    31490

    瀏覽量

    269915
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3298

    瀏覽量

    49075
  • 大數(shù)據(jù)
    +關(guān)注

    關(guān)注

    64

    文章

    8908

    瀏覽量

    137657
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    NVIDIA推出加速物理AI開發(fā)的Cosmos世界基礎(chǔ)模型

    經(jīng)數(shù)百萬(wàn)小時(shí)的駕駛和機(jī)器人視頻數(shù)據(jù)訓(xùn)練的先進(jìn)模型,可用于普及物理 AI 開發(fā),并以開放模型許可形式提供。
    的頭像 發(fā)表于 01-09 11:05 ?262次閱讀

    AI大語(yǔ)言模型開發(fā)步驟

    開發(fā)一個(gè)高效、準(zhǔn)確的大語(yǔ)言模型是一個(gè)復(fù)雜且多階段的過(guò)程,涉及數(shù)據(jù)收集與預(yù)處理、模型架構(gòu)設(shè)計(jì)、訓(xùn)練與優(yōu)化、評(píng)估與調(diào)試等多個(gè)環(huán)節(jié)。接下來(lái),AI部落小編為大家詳細(xì)闡述
    的頭像 發(fā)表于 12-19 11:29 ?205次閱讀

    大語(yǔ)言模型開發(fā)框架是什么

    大語(yǔ)言模型開發(fā)框架是指用于訓(xùn)練、推理和部署大型語(yǔ)言模型的軟件工具和庫(kù)。下面,AI部落小編為您介紹大語(yǔ)言模型
    的頭像 發(fā)表于 12-06 10:28 ?167次閱讀

    名單公布!【書籍評(píng)測(cè)活動(dòng)NO.49】大模型啟示錄:一本AI應(yīng)用百科全書

    一次大模型變革中,完全不缺態(tài)度,只缺認(rèn)知與落地的經(jīng)驗(yàn)。 在過(guò)去的兩年中,我們看到了全球太多的巨頭和普通中小企業(yè),進(jìn)入All in AI的投資周期。有的已經(jīng)開始落地到具體的生產(chǎn)流程,例如企業(yè)內(nèi)部客服、優(yōu)化
    發(fā)表于 10-28 15:34

    常見AI模型的比較與選擇指南

    :由月暗面科技有限公司開發(fā),擅長(zhǎng)中英文對(duì)話,能處理多種文件格式(TXT、PDF、Word、PPT、Excel等),還能閱讀和理解用戶上傳的文件,并結(jié)合互聯(lián)網(wǎng)搜索結(jié)果來(lái)回答問(wèn)題。 智普清言(智譜清言) :基于智譜AI自主研發(fā)的
    的頭像 發(fā)表于 10-23 15:36 ?1057次閱讀

    【「大模型時(shí)代的基礎(chǔ)架構(gòu)」閱讀體驗(yàn)】+ 未知領(lǐng)域的感受

    國(guó)慶前就收到《大模型時(shí)代的基礎(chǔ)架構(gòu)》一書,感謝電子發(fā)燒友論壇。歡度國(guó)慶之余,今天才靜下心來(lái)體驗(yàn)此書,書不厚,200余頁(yè),彩色圖例,印刷精美! 當(dāng)初申請(qǐng)此書,主要是看到副標(biāo)題“大模型算力中心建設(shè)指南
    發(fā)表于 10-08 10:40

    模型時(shí)代的算力需求

    現(xiàn)在AI已進(jìn)入大模型時(shí)代,各企業(yè)都爭(zhēng)相部署大模型,但如何保證大模型的算力,以及相關(guān)的穩(wěn)定性和性能,是一個(gè)極為重要的問(wèn)題,帶著這個(gè)極為重要的問(wèn)
    發(fā)表于 08-20 09:04

    AI模型AI框架的關(guān)系

    多個(gè)領(lǐng)域取得顯著成果。而AI框架則是為開發(fā)和訓(xùn)練AI模型提供的一套標(biāo)準(zhǔn)接口、特性庫(kù)和工具包,它集成了算法的封裝、數(shù)據(jù)的調(diào)用以及計(jì)算資源的使用,是AI
    的頭像 發(fā)表于 07-15 11:42 ?1212次閱讀

    聆思CSK6視覺語(yǔ)音大模型AI開發(fā)板入門資源合集(硬件資料、大模型語(yǔ)音/多模態(tài)交互/英語(yǔ)評(píng)測(cè)SDK合集)

    本帖最后由 jf_40317719 于 2024-6-18 17:39 編輯 視覺語(yǔ)音大模型 AI 開發(fā)套件( CSK6-MIX )是圍繞 CSK6011A 芯片設(shè)計(jì)的具備豐富語(yǔ)音圖像功能
    發(fā)表于 06-18 17:33

    2024 TUYA全球開發(fā)者大會(huì)盛大啟幕,Cube AI模型重磅首發(fā)!

    AI浪潮席卷全球的當(dāng)下,把握時(shí)代脈搏,全面擁抱生成式AI已成為共識(shí)。面對(duì)AI帶來(lái)的無(wú)限可能,開發(fā)者們紛紛投身其中,積極探尋
    的頭像 發(fā)表于 05-31 08:15 ?395次閱讀
    2024 TUYA全球<b class='flag-5'>開發(fā)</b>者大會(huì)盛大啟幕,Cube <b class='flag-5'>AI</b>大<b class='flag-5'>模型</b>重磅首發(fā)!

    2024 TUYA全球開發(fā)者大會(huì)盛大啟幕,Cube AI模型重磅首發(fā)!

    AI浪潮席卷全球的當(dāng)下,把握時(shí)代脈搏,全面擁抱生成式AI已成為共識(shí)。面對(duì)AI帶來(lái)的無(wú)限可能,開發(fā)者們紛紛投身其中,積極探尋
    發(fā)表于 05-30 09:13 ?242次閱讀
    2024 TUYA全球<b class='flag-5'>開發(fā)</b>者大會(huì)盛大啟幕,Cube <b class='flag-5'>AI</b>大<b class='flag-5'>模型</b>重磅首發(fā)!

    STM CUBE AI錯(cuò)誤導(dǎo)入onnx模型報(bào)錯(cuò)的原因?

    使用cube-AI分析模型時(shí)報(bào)錯(cuò),該模型是pytorch的cnn轉(zhuǎn)化成onnx ``` Neural Network Tools for STM32AI v1.7.0 (STM.
    發(fā)表于 05-27 07:15

    AI時(shí)代怎么樣不被淘汰?訊飛AI鼠標(biāo)助力你在AI時(shí)代成長(zhǎng)

    功能的智能鼠標(biāo),將成為你躋身AI時(shí)代的利器。 下面來(lái)聊聊訊飛AI鼠標(biāo)都有哪些令人驚艷的AI功能吧 1.星火認(rèn)知大模型
    的頭像 發(fā)表于 03-23 11:41 ?742次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>時(shí)代</b>怎么樣不被淘汰?訊飛<b class='flag-5'>AI</b>鼠標(biāo)助力你在<b class='flag-5'>AI</b><b class='flag-5'>時(shí)代</b>成長(zhǎng)

    防止AI模型被黑客病毒入侵控制(原創(chuàng))聆思大模型AI開發(fā)套件評(píng)測(cè)4

    在設(shè)計(jì)防止AI模型被黑客病毒入侵時(shí),需要考慮到復(fù)雜的加密和解密算法以及模型的實(shí)現(xiàn)細(xì)節(jié),首先需要了解模型的結(jié)構(gòu)和實(shí)現(xiàn)細(xì)節(jié)。 以下是我使用Python和TensorFlow 2.x實(shí)現(xiàn)
    發(fā)表于 03-19 11:18

    使用cube-AI分析模型時(shí)報(bào)錯(cuò)的原因有哪些?

    使用cube-AI分析模型時(shí)報(bào)錯(cuò),該模型是pytorch的cnn轉(zhuǎn)化成onnx ``` Neural Network Tools for STM32AI v1.7.0 (STM.
    發(fā)表于 03-14 07:09
    主站蜘蛛池模板: 亚色九九九全国免费视频 | 理论片午午伦夜理片影院 | 午夜国产福利 | 国产毛片A级久久久不卡精品 | 国产性色AV内射白浆肛交后入 | 么公一夜要了我一八次视频HD | 精品无码乱码AV | 日韩精品久久久久久久电影 | 国产午夜精品理论片影院 | 在线看片福利无码网址 | 长泽梓黑人初解禁bdd07 | 丰满的大白屁股ass 丰满大屁俄罗斯肥女 | 野花影院手机在线观看 | 俄罗斯15一16处交 | 中文成人在线视频 | 欧美精品色婷婷五月综合 | 精品欧美一区二区三区久久久 | 亚洲色欲色欲WWW在线成人网 | yy8090韩国理伦片在线 | 精品丰满人妻无套内射 | 精品国产一区二区三区久久影院 | 亚洲精品成A人在线观看 | 成人永久免费视频 | 国产亚洲人成网站在线观看播放 | 动漫美女和男人下载 | 久久99久久成人免费播放 | 秋霞久久久久久一区二区 | 久久视频精品38在线播放 | 哺乳溢出羽月希中文字幕 | 中文字幕在线免费观看视频 | 无套内射CHINESEHD熟女 | 亚洲精品第一综合99久久 | 国产精品久久久久AV麻豆 | 羞羞一区二区三区四区片 | 特级黑人三人共一女 | 国产嫩草在线观看 | 亚洲精品久久久久久久蜜臀老牛 | 精品三级在线观看 | 日本一区二区三区在线观看网站 | 一二三四电影完整版免费观看 | 国产伊人自拍 |