色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

采用加速度計的高精度角度/傾斜檢測系統(tǒng)的性能指標

analog_devices ? 來源:亞德諾半導體 ? 作者:亞德諾半導體 ? 2021-01-21 10:52 ? 次閱讀

加速度計是一種非常不錯的傳感器,可以檢測到開始傾塌的大橋在重力作用下,呈現(xiàn)細微的方向變化時的靜態(tài)和動態(tài)加速度。這些傳感器包括當您傾斜手機顯示屏時,可以改變顯示屏方向的手機應用器件,也包括受出口管制,可以幫助航天器導航的戰(zhàn)術級器件。但是,與大多數(shù)傳感器一樣,該傳感器在實驗室或試驗臺上表現(xiàn)出色是一回事,面對荒涼、不受控制的環(huán)境條件和溫度應力時要保持同等的系統(tǒng)級性能,則完全是另一回事了。像人類一樣,當加速度計在其生命周期中承受了前所未有的應力時,系統(tǒng)會做出反應并可能因這些應力的影響而發(fā)生故障。

高精度傾斜檢測系統(tǒng)在校準之后,傾斜精度一般可以優(yōu)于1°。使用市場領先的超低噪聲和高度穩(wěn)定的加速度計,例如 ADXL354 或 ADXL355,通過對可觀測到的誤差源進行校準,其傾斜精度可以達到0.005°。但是,只有在適當減輕應力的情況下才能達到這種精度水平。例如,傳感器承受的壓縮/拉應力可能導致其出現(xiàn)高達20 mg的偏移,使得傾斜誤差超過 1°。

本文探討采用加速度計的高精度角度/傾斜檢測系統(tǒng)的性能指標。我們首先從微觀角度分析傳感器設計,以便更好地了解微米級別應力和應變的影響。分析表明,如果不遵循整體的機械和物理設計方法,則會出現(xiàn)一些令人驚訝的結果。最后,為設計人員介紹了有助于在要求嚴苛的應用中充分提升性能的切實可行的步驟。

ADXL35x傳感器設計

從價格和性能角度來看,基于MEMS的加速度計適用于從消費類產品到安全檢測的各類應用。在ADI產品組合中,性能最出色的低噪聲加速度計是ADXL354和ADXL355,支持精密傾斜檢測、地震成像等應用,以及機器人和平臺穩(wěn)定等許多新興應用。ADXL355具備市場領先的特性,使其在高精度傾斜/角度檢測應用中具有獨特的優(yōu)勢,例如出色的噪聲、偏移、重復性和與溫度相關的偏移,以及振動校正和跨軸靈敏度等二階效應。本文將以這種特定的傳感器作為高精度加速度計的示例來詳細探討;但是,本節(jié)中討論的原理適用于絕大多數(shù)三軸MEMS加速度計。

為了更好地理解促使ADXL355實現(xiàn)出色性能的設計考量,我們首先來回顧傳感器的內部結構,闡明三軸對環(huán)境參數(shù)(例如,平面外應力)做出不同響應的原因。在許多情況下,這種平面外應力都是由傳感器z軸上的溫度梯度引起的。

ADXL35x系列加速度計包含一個彈簧質量系統(tǒng),這與許多其他的MEMS加速度計類似。質量響應外部加速度(靜態(tài)加速度(如重力)或動態(tài)加速度(如速度變化))而移動,其物理位移通過傳導機制進行檢測。MEMS傳感器采用的最常見的傳導機制包括電容式、壓阻式、壓電式或磁性。ADXL355采用電容傳導機制,通過電容變化來檢測移動,而電容變化通過讀取電路可轉換為電壓或電流輸出。雖然ADXL355對硅芯片上的所有三軸傳感器都采用了電容傳導機制,但X/Y傳感器和Z傳感器采用了兩種完全不同的電容檢測架構。X/Y傳感器均基于差分平面內叉指,而Z傳感器是平面外平行板電容傳感器,如圖1所示。

638286f4-5b92-11eb-8b86-12bb97331649.jpg

圖 1. ADXL355 的傳感器架構。對于 X/Y 傳感器,隨著檢測質量塊的移動,固定指與質量塊所連接的叉指之間的電容會發(fā)生變化。z 軸傳感器上的質量不均衡,因此可以對 z 軸加速度進行平面外檢測。

如果傳感器上存在壓縮應力或拉應力,MEMS芯片會翹曲。由于檢測質量塊通過彈簧懸掛在襯底上方,所以不會和襯底一起翹曲,但質量塊和襯底之間的間隙會發(fā)生變化。對于X/Y傳感器,由于平面內位移對叉指電容變化的影響最大,所以間隙不在電容靈敏度這個方向,這是由邊緣電場的補償作用導致的。但是,對于Z傳感器,襯底和檢測質量塊之間的間隙實際上是檢測間隙。所以,它會對Z傳感器產生直接影響,因為它有效改變了Z傳感器的檢測間隙。此外,Z傳感器位于芯片中央,只要芯片受到任何應力,該位置都會產生最大程度翹曲。

除了物理應力之外,由于在大多數(shù)應用中,z軸上的熱傳遞都不對稱,所以z軸傳感器上經常存在溫度梯度。在典型應用中,傳感器焊接在印刷電路板(PCB)上,而且整個系統(tǒng)都在封裝內。X和Y軸的熱傳遞主要通過封裝周邊的焊點來傳遞,并傳遞到對稱的PCB上。但是,在z方向,由于芯片頂部存在焊點和對流,所以熱傳遞通過底部傳導,熱量會通過空氣傳遞到封裝外。由于這種不匹配,z軸上會出現(xiàn)殘余的溫差梯度。與物理壓縮/拉應力一樣,這會使z軸上出現(xiàn)并非由加速度導致的偏移。

受環(huán)境應力影響的數(shù)據(jù)評述

ADXL354(模擬輸出)加速度計可以連接至任何模擬數(shù)據(jù)采集系統(tǒng)來實施數(shù)據(jù)分析,而ADXL355評估板經過優(yōu)化,可直接放入客戶系統(tǒng)中,從而簡化了現(xiàn)有嵌入式系統(tǒng)的原型設計。為了闡明本文主旨,我們使用了小型評估板EVAL-ADXL35x。為了記錄和分析數(shù)據(jù),我們將EVAL-ADXL35x連接至SDP-K1微控制器板,并使用Mbed 環(huán)境進行編程。Mbed是適用于ARM 微控制器板的開源和免費開發(fā)環(huán)境,配有一個在線編譯器,可以幫助您快速構建。SDP-K1板在連接至PC時,會顯示為外部驅動器。要對該板編程時,只需將編譯器生成的二進制文件拖放到SDP-K1驅動器中即可。

一旦Mbed系統(tǒng)通過UART記錄數(shù)據(jù),就形成了一個基本的測試環(huán)境,可以嘗試進行ADXL355實驗,并將輸出傳輸?shù)胶唵味丝冢糜谟涗洈?shù)據(jù)和進一步分析。需要注意的是,無論加速度計的輸出數(shù)據(jù)速率是多少,Mbed代碼都以2 Hz的速率記錄寄存器。在Mbed中也可以采用更快的記錄速度,但本文不做闡述。

良好的初始數(shù)據(jù)集有助于確定基準性能,并驗證我們后續(xù)進行的大部分數(shù)據(jù)分析中可能出現(xiàn)的噪聲水平。使用具有吸盤裝置的PanaVise鉸接式虎鉗,這樣將該設備粘附在玻璃表面時,就可以通過工作臺設置實現(xiàn)相當穩(wěn)定的工作表面。采用這種配置,ADXL355板(從側面固定)與實驗室工作臺一樣穩(wěn)定。更高級的電力用戶可能會注意到,安裝這種虎鉗存在傾翻風險,但這是一種簡單而經濟的方法,可以根據(jù)重力改變方向。如圖2所示安裝ADXL355板之后,持續(xù)60秒采集一組數(shù)據(jù)進行首次分析。

圖 2. 使用 EVAL-ADXL35x 、 SDP-K1 和 PanaVise 支架的測試裝置。

64867ce0-5b92-11eb-8b86-12bb97331649.jpg

圖 3. 未采用低通濾波器(寄存器 0x28=0x00 )時的 ADXL355 數(shù)據(jù),采集數(shù)據(jù)時長超過 1 分鐘。

取120個數(shù)據(jù)點并測量標準偏差,顯示噪聲在800 μg到1.1 mg之間。根據(jù)ADXL355數(shù)據(jù)手冊中的典型性能規(guī)格,我們看到列出的噪聲密度為 25 μg/√Hz。在默認的低通濾波器(LPF)設置下,加速度計的帶寬約為1000 Hz。假設采用磚墻式濾波器,此時噪聲大約為 25 μg/√Hz × √1000 Hz = 791 μg 。這個初始數(shù)據(jù)集通過了首次取樣測試。準確地說,從噪聲譜密度向有效值噪聲的轉換采用的系數(shù)應可以表示一個事實,即數(shù)字LPF不會無限滾降(也就是,一個磚墻式濾波器)。有些使用1.6×系數(shù)可實現(xiàn)簡單的RC單極點20 dB/倍頻程滾降,但ADXL355數(shù)字低通濾波器不是單極點RC濾波器。無論如何,假設系數(shù)在1和1.6之間,至少可以讓我們正確預估噪聲近似值。

對于許多精密檢測應用,相對于被測量的信號,1000 Hz帶寬的范圍過于寬大。為了幫助優(yōu)化帶寬和噪聲之間的折衷空間,ADXL355采用了一個板載數(shù)字低通濾波器。在接下來的測試中,我們將LPF設置為4 Hz,這將使噪聲以 √1000/√4 ≈ 16的噪聲系數(shù)降低。該測試在Mbed環(huán)境中使用圖4所示的簡單結構完成,數(shù)據(jù)如圖5所示。經過濾波后,噪聲如預期一樣顯著下降。如表1所示。

64c4ee76-5b92-11eb-8b86-12bb97331649.jpg

圖 4. 用于配置寄存器的 Mbed 代碼。

6544e270-5b92-11eb-8b86-12bb97331649.jpg

圖 5. LPF 設置為 4 Hz (寄存器 0x28=0x08 )時的 ADXL355 數(shù)據(jù),采集數(shù)據(jù)時長超過 1 分鐘。

65b2b822-5b92-11eb-8b86-12bb97331649.png

表1. ADXL355的預期噪聲和測量噪聲

表1顯示,在當前設置下,y軸的噪聲高于預期的理論值。在調查了可能的原因后,我們發(fā)現(xiàn),額外的筆記本電腦和其他實驗室設備風扇的振動可能在y軸上表現(xiàn)為噪聲。為了驗證這一點,我們轉動虎鉗,讓x軸到達y軸原先所在的位置,結果顯示,x軸成為了噪聲更高的軸。軸與軸之間的噪聲差異則似乎是儀表噪聲,而不是加速度計各軸之間噪聲水平本身的差異。這種類型的測試實際上是對低噪聲加速度計的"初始"測試,從而增強了進一步測試的信心。

為了解熱沖擊會對ADXL355造成多大影響,我們選用了一把熱風槍,將它調整到冷風模式(實際上比室溫高幾度),以便給加速度計施加熱應力。我們也使用ADXL355的板載溫度傳感器來記錄溫度。在本次實驗中,我們使用虎鉗將ADXL355垂直放置,用熱風槍對封裝頂部吹風。我們預期實驗過程中偏移時的溫度系數(shù)會隨著芯片溫度的升高而顯現(xiàn),但任何溫差熱應力幾乎會立即呈現(xiàn)出來。換句話說,如果單個檢測軸對溫差熱應力很敏感,那么加速度計輸出中可能出現(xiàn)大的起伏。刪除數(shù)據(jù)變化較為平緩時的平均值,就可輕松地同時比較三個軸。結果如圖6所示。

65e1cc34-5b92-11eb-8b86-12bb97331649.jpg

圖 6. 使用采用冷風模式的熱風槍時, ADXL355 的熱沖擊數(shù)據(jù)。

從圖6中可以看出,用熱風槍將溫度稍高的風吹到密封型陶瓷封裝上。結果,z軸上出現(xiàn)~1500 μg的偏移,y軸上的偏移要小的多(可能為~100 μg),x軸上則幾乎無偏移。雖然許多最終客戶產品的PCB頂部有外殼,可以分散溫差熱應力,但我們需要考慮這些類型的快速瞬變應力,從這個簡單測試中可以看出,這些應力可能會表現(xiàn)為偏移誤差。

圖7顯示了關閉熱風槍之后,呈現(xiàn)的相反的極性效應。

6619ab90-5b92-11eb-8b86-12bb97331649.jpg

圖 7. 在 t = 240 秒關閉熱風槍時, ADXL355 受到的熱沖擊。

在加熱環(huán)境中使用熱風槍時,這種效果更加明顯;即溫度沖擊的幅度更大時。Weller熱風槍的輸出溫度約為400°C,,所以在使用時,需間隔一段距離,以免因為過熱或熱沖擊造成損壞。在本次測試中,熱風槍在距離ADXL355大約15 cm的位置吹出熱風,導致溫度立即升高大約40°C,如圖8所示。

667de902-5b92-11eb-8b86-12bb97331649.jpg

圖 8. 使用熱風槍時, ADXL355 受到的熱沖擊。

盡管熱沖擊的強度相當大,但在本次實驗期間,仍然可以明顯看到,z軸的反應速度要比x軸和y軸快得多。使用數(shù)據(jù)手冊中的偏移溫度系數(shù),當溫度發(fā)生40°C,偏移時,將會看到約100 μg/°C ×40 °C = 4 mg的偏移,x軸和y軸最終會顯示這一點。但是,我們發(fā)現(xiàn),z軸上幾乎立刻出現(xiàn)10 mg偏移,說明這種影響與溫度導致的偏移不同。這是由傳感器上的溫差熱應力/應變造成的,在z軸上表現(xiàn)得最明顯,這是因為,如前文所述,相比x和y軸,z軸上的傳感器對溫差應力更敏感。

在數(shù)據(jù)手冊中,ADXL355的典型偏移溫度系數(shù)(失調溫度系數(shù))為±100 μg/°C。我們需要理解此處所用的測試方法,這非常重要,因為失調溫度系數(shù)是在烤箱中使用加速度計進行測量的。在傳感器的溫度范圍內,烤箱溫度慢慢上升,我們測量偏移的斜度。典型示例如圖9所示。

66c32b70-5b92-11eb-8b86-12bb97331649.jpg

圖 9. ADXL355 在烤箱中進行測試的溫度特性。

圖中顯示了兩種影響。一種是數(shù)據(jù)手冊中描述和記錄的失調溫度系數(shù)。這是烤箱以5°C/min的速度升溫,但不保溫的情況下,在–45°C到+120°C溫度范圍內許多產品的平均值。從與圖9類似的圖表中可以得出此結果,且可以指出在高于165°C時為18 mg,或 約109 μg/°C,稍微超出100 μg/°C典型值的范圍,但仍在數(shù)據(jù)手冊規(guī)定的最小值和最大值范圍內。但是,考慮一下圖9右側所示的情況,讓器件在120°C下保溫15分鐘會怎么樣。當設備處于高溫下時,實際的偏移量下降并改善。

在這種情況下,平均值在高于165°C時接近10 mg,或失調溫度系數(shù)約為60 μg/°C。產生的第二種影響與溫差熱應力有關,傳感器檢測質量塊在整個硅芯片器件的溫度范圍內穩(wěn)定下來后,應力隨之降低。圖6到圖8所示的熱風槍測試也顯示了這種影響,與數(shù)據(jù)手冊中列出的長期失調溫度系數(shù)相比,這種影響會在更短的時間量程內顯現(xiàn),了解這一點非常重要。對于因受總體的熱動力學影響,升溫速度遠遠慢于5°C/min的許多系統(tǒng)而言,上述發(fā)現(xiàn)很有價值。

影響ADXL355穩(wěn)定性的其他因素

在深入理解設計中的熱應力之后,還需了解慣性傳感器的另一個重要方面,即其長期穩(wěn)定性或可重復性。可重復性是指在相同條件下長時間連續(xù)測量的準確性。例如,在一段時間內,對相同溫度下同一方向的重力場進行兩次測量,并觀察其匹配程度。對于無法定期實施維護校準的應用,在評估傳感器的長期穩(wěn)定性時,偏移的可重復性和靈敏度是至關重要的因素。許多傳感器制造商未在其數(shù)據(jù)手冊中描述或規(guī)定長期穩(wěn)定性。在ADI的ADXL355數(shù)據(jù)手冊中,可重復性為10年壽命預測值,包括高溫工作壽命測試(HTOL)(T A= 150°C、VSUPPLY= 3.6 V、1000小時)、測量溫度循環(huán)(?55°C至+125°C且循環(huán)1000次)、速度隨機游走、寬帶噪聲和溫度遲滯引起的測量偏移。如數(shù)據(jù)手冊中所示,ADXL35x系列具有出色的可重復性,ADXL355的X/Y傳感器和Z傳感器的精度分別為±2 mg和±3 mg。

在穩(wěn)定的機械、環(huán)境和慣性條件下,可重復性遵循平方根定律,因為它與測量的時間有關。例如,要獲得x軸在兩年半的時間里(對于最終產品來說,可能是很短的一段時間)的偏移可重復性,可以使用以下公式計算 ±2 mg × √(2.5 years/10 years)= ±1 mg。圖10顯示在23天內,32個器件的HTOL測試結果:偏移為0 g。在此圖中可以清楚地看到平方根定律。還應該強調的是,由于MEMS傳感器制造過程中的工藝差異,每個器件的性能都不同,有些器件的性能優(yōu)于其他器件。

66ffa6c2-5b92-11eb-8b86-12bb97331649.jpg

圖 10. ADXL355 長達 500 小時的長期穩(wěn)定性。

機械系統(tǒng)設計建議

經過上述分析探討,很明顯可以看出,機械安裝表面和外殼設計可以幫助提升ADXL355傳感器的總體性能,因為它們會影響傳遞給傳感器的物理應力。一般來說,機械安裝、外殼和傳感器會構成一個二階(或更高階)系統(tǒng);因此,在諧振或過阻尼期間,它會做出不同的響應。機械支持系統(tǒng)具有代表這些二階系統(tǒng)的模式(由諧振頻率和品質因數(shù)定義)。在大多數(shù)情況下,我們的目標是了解這些因素,并盡量減少它們對傳感系統(tǒng)的影響。因此,選擇的傳感器的封裝外形、所有接口和材料都應該能夠避免在ADXL355應用的帶寬內造成機械衰減(因為過阻尼)或放大(因為諧振)。本文對這些具體的設計考量因素不予過多探討;但是,會簡要列出一些實用項:

PCB、安裝和外殼

將PCB牢固地粘接在剛性襯底上。使用多個安裝螺釘,并在PCB背面使用粘膠,確保牢靠支持。

將傳感器放置在靠近安裝螺釘或緊固件的位置。如果PCB體積較大(約幾英寸),則在板中央使用多個安裝螺釘,避免PCB出現(xiàn)低頻振動,因為這種振動會影響加速度計的測量結果。

如果PCB只是由凹槽/凸沿結構提供機械支撐,則使用更厚的PCB(推薦厚度大于2 mm)。在PCB尺寸較大時,增加其厚度來保持系統(tǒng)的剛性。使用有限元分析(例如ANSYS或類似分析),針對特定設計確定最佳PCB外形尺寸和厚度。

對于一些應用,例如對傳感器實施長時間測量的結構健康監(jiān)測應用,傳感器的長期穩(wěn)定性至關重要。在選擇封裝、PCB和粘膠材料時,應選擇在長時間內性能下降或機械特性變化最小的產品,以免給傳感器帶來額外的應力,進而導致出現(xiàn)偏移。

避免對外殼的固有頻率進行假設。對簡單的外殼實施固有振動模型計算,對復雜的外殼設計實施有限元分析,將會很有幫助。

將ADXL355和電路板焊接在一起會產生應力,導致出現(xiàn)高達幾mg的偏移。為了減輕這種影響,建議PCB焊盤圖案、導熱片和銅走線導熱路徑采用對稱布局。嚴格遵守ADXL355數(shù)據(jù)手冊中提供的焊接指南。我們還發(fā)現(xiàn),在某些情況下,在校準前實施焊料退火或熱循環(huán)可以幫助緩解應力累積和幫助管理長期穩(wěn)定性問題。

灌注材料

灌注材料廣泛用于將電子器件固定在外殼內。如果傳感器封裝采用的是二次成型塑料,例如連接盤網(wǎng)格陣列(LGA),則不建議使用灌注材料,因為它們的溫度系數(shù)(TC)與外殼材料不匹配,會導致壓力直接影響傳感器,從而發(fā)生偏移。但是,ADXL355采用氣密陶瓷封裝,可以有效保護傳感器不受TC影響。但是,灌注材料可能仍會在PCB上形成應力累積,這是因為隨著時間流逝,材料的性能會退化,導致硅芯片出現(xiàn)微小翹曲,在傳感器上形成應力。對于需要在長時間內保持穩(wěn)定性的應用,一般建議避免使用灌注。低應力保形涂層(例如C型聚對二甲苯)可以提供一些防潮層,用于代替灌注。

氣流、熱傳遞和熱平衡

為了達到最佳的傳感器性能,需要在溫度穩(wěn)定性得到優(yōu)化的環(huán)境中設計、放置和使用檢測系統(tǒng),這非常重要。如本文所示,由于傳感器裸片上存在溫差熱應力,即使微小的溫度變化也可能導致意想不到的后果。以下是一些建議:

應將傳感器置于PCB上,以最大限度降低傳感器上的熱梯度。例如,線性穩(wěn)壓器會產生大量熱量;所以,它們在接近傳感器時,會在MEMS上產生熱梯度,并且熱梯度將會隨著穩(wěn)壓器的電流輸出不同而變化。

盡可能將傳感器模塊部署在遠離氣流(例如HVAC)的區(qū)域,以避免頻繁的溫度波動。如果不可行,在封裝外部或內部采取熱隔離會大有幫助,可以通過熱絕緣實現(xiàn)。注意,傳導和對流熱路徑都需要考慮。

建議選擇外殼的熱質量,使其可以在無法避免環(huán)境熱變化的應用中抑制環(huán)境熱波動。

結論

本文闡述了在未充分考慮環(huán)境和機械影響的情況下,高精度ADXL355加速度計的性能會如何下降。通過整體的設計實踐,同時關注系統(tǒng)級配置,敏銳的工程師可以獲得出色的傳感器系統(tǒng)性能。我們許多人都承受著前所未有的生活壓力,但永遠不會壓倒我們,重要的是面對壓力我們如何應對,加速度計也是這樣,認識到這一點非常重要。

責任編輯:xj

原文標題:化“壓力”為“動力”,這款加速度計在嚴苛環(huán)境下依舊出色!

文章出處:【微信公眾號:亞德諾半導體】歡迎添加關注!文章轉載請注明出處。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2552

    文章

    51366

    瀏覽量

    755731
  • 加速計
    +關注

    關注

    3

    文章

    126

    瀏覽量

    58439

原文標題:化“壓力”為“動力”,這款加速度計在嚴苛環(huán)境下依舊出色!

文章出處:【微信號:analog_devices,微信公眾號:analog_devices】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    十軸姿態(tài)傳感器模塊 | 集成加速度計、陀螺儀、磁力,自帶BLE5.0藍牙

    電子全新推出的一款十軸姿態(tài)傳感器模塊,模塊集成高精度加速度計、陀螺儀和磁力采用性能微處理器和先進的濾波算法,能夠快速解算出模塊當前的
    的頭像 發(fā)表于 01-06 12:47 ?193次閱讀
    十軸姿態(tài)傳感器模塊 | 集成<b class='flag-5'>加速度計</b>、陀螺儀、磁力<b class='flag-5'>計</b>,自帶BLE5.0藍牙

    MEMS加速度計的工作原理是什么

    MEMS加速度計的工作原理主要基于牛頓第二定律,即力等于質量乘以加速度。以下是對其工作原理的介紹: 一、核心部件與結構 MEMS加速度計的核心部件包括一個微小的質量塊、彈性元件(如彈簧梁)以及
    的頭像 發(fā)表于 11-20 10:09 ?925次閱讀

    EPSON工業(yè)級加速度計選型

    、重力方向、傾角、振動、沖擊、速度和位移等。相較于智能手機里的商用加速度計無論是性能和價格都要高出很多,主要是用在建筑和土木工程客戶低頻工程檢測和大型機器和大型管
    的頭像 發(fā)表于 09-19 15:31 ?336次閱讀
    EPSON工業(yè)級<b class='flag-5'>加速度計</b>選型

    e2studio開發(fā)三軸加速度計LIS2DW12(4)----測量傾斜

    本文將介紹如何驅動和利用LIS2DW12三軸加速度計傾斜檢測理論和傾斜角測量方法。一般來說,這里描述的程序也可以應用于三軸模擬或數(shù)字加速度計
    的頭像 發(fā)表于 08-09 16:00 ?692次閱讀
    e2studio開發(fā)三軸<b class='flag-5'>加速度計</b>LIS2DW12(4)----測量<b class='flag-5'>傾斜</b>度

    請問比LIS3DH更穩(wěn)定的超低功耗加速度計有哪些可選擇?

    我們在使用LIS3DH作為傾斜角度監(jiān)控時發(fā)現(xiàn),長時間(6個月左右)運行可能會發(fā)生角度漂移,而且越來越大,ST有沒有工業(yè)級或車規(guī)級的差不多的超低功耗加速度計?另,問一下大神們LIS2DS12什么級別的?
    發(fā)表于 05-21 08:10

    三軸加速度計LIS2DUX12開發(fā)(2)----靜態(tài)校準

    零偏是影響加速度計輸出精度的重要指標之一,零偏可分為靜態(tài)零偏和動態(tài)零偏 。靜態(tài)零偏也稱為固定零偏,通常經標定與補償減小靜態(tài)零偏。動態(tài)零偏是由于加速度計自身的缺陷或環(huán)境因素(如溫度、振動
    的頭像 發(fā)表于 05-17 15:27 ?1301次閱讀
    三軸<b class='flag-5'>加速度計</b>LIS2DUX12開發(fā)(2)----靜態(tài)校準

    e2studio開發(fā)三軸加速度計LIS2DW12(4)----測量傾斜

    本文將介紹如何驅動和利用LIS2DW12三軸加速度計傾斜檢測理論和傾斜角測量方法。一般來說,這里描述的程序也可以應用于三軸模擬或數(shù)字加速度計
    的頭像 發(fā)表于 05-17 15:00 ?1315次閱讀
    e2studio開發(fā)三軸<b class='flag-5'>加速度計</b>LIS2DW12(4)----測量<b class='flag-5'>傾斜</b>度

    微納光柵MOEMS加速度計的工作原理及仿真設計

    微機電系統(tǒng)(MEMS)加速度計以其體積小、功耗低、成本低等優(yōu)勢廣泛應用在無人駕駛、地震檢測等領域。
    的頭像 發(fā)表于 05-17 09:33 ?1206次閱讀
    微納光柵MOEMS<b class='flag-5'>加速度計</b>的工作原理及仿真設計

    三軸加速度計LIS2DW12開發(fā)(4)----測量傾斜

    本文將介紹如何驅動和利用LIS2DW12三軸加速度計傾斜檢測理論和傾斜角測量方法。一般來說,這里描述的程序也可以應用于三軸模擬或數(shù)字加速度計
    的頭像 發(fā)表于 05-16 17:18 ?1188次閱讀
    三軸<b class='flag-5'>加速度計</b>LIS2DW12開發(fā)(4)----測量<b class='flag-5'>傾斜</b>度

    備受青睞的MEMS加速度計,更小尺寸、更低功耗、更智能

    ,進而提供傳感數(shù)據(jù)方便系統(tǒng)對設備或系統(tǒng)做出狀態(tài)評估。 ? 現(xiàn)在消費電子行業(yè)朝著更時尚、更簡約的設計方向發(fā)展,工業(yè)領域也對加速度計提出了更小尺寸更高集成性的需求,很多應用領域對微型加速度計
    的頭像 發(fā)表于 05-12 08:02 ?3509次閱讀

    采用可調電熱微梁的近零剛度MEMS加速度計

    MEMS加速度計正越來越多地應用于各種移動和測試設備,以測量運動、沖擊和振動。
    的頭像 發(fā)表于 05-09 09:11 ?650次閱讀
    <b class='flag-5'>采用</b>可調電熱微梁的近零剛度MEMS<b class='flag-5'>加速度計</b>

    請問要如何設置才會讓加速度計LIS3DH輕微振動不觸發(fā)中斷,但是翻轉一定角度觸發(fā)中斷?

    我使用加速度計LIS3DH監(jiān)控設備角度的異常改變,但在應用中發(fā)現(xiàn)輕微振動和角度翻轉都會觸發(fā)中斷,喚醒MCU,無法實現(xiàn)低功耗。請問要如何設置才會讓加速度計LIS3DH輕微振動不觸發(fā)中斷,
    發(fā)表于 03-22 07:03

    求助,關于LIS2HH12TR讀加速度計的疑問求解

    情況,不需要中斷的情況 我的測試環(huán)境:我把裝有加速度計的板子安裝在三軸云臺上,首先水平,讀出的X 是7.4° 然后三軸臺繞X軸旋轉三十度(三軸臺的精度是0.01°)此時讀出的角度是38.56°。但是在此位置
    發(fā)表于 03-18 07:08

    愛普生三軸加速度計傳感器HGPM01

    HGPM01是基于高性能陀螺儀陀傳感器和加速度計開發(fā)的模組,內置3軸陀螺儀和3軸加速度計傳感器。依賴于高精度的傳感器、高性能的處理器和高級的
    的頭像 發(fā)表于 03-05 14:36 ?500次閱讀
    愛普生三軸<b class='flag-5'>加速度計</b>傳感器HGPM01

    MEMS加速度計與MEMS陀螺儀的區(qū)別

    MEMS加速度計與MEMS陀螺儀是現(xiàn)代慣性導航系統(tǒng)中最常用的傳感器。
    的頭像 發(fā)表于 02-17 14:05 ?3711次閱讀
    MEMS<b class='flag-5'>加速度計</b>與MEMS陀螺儀的區(qū)別
    主站蜘蛛池模板: 99久久久精品免费观看国产| 久久综合视频网站| 手机毛片免费看| 极品少妇小泬50PTHEPON| 中文字幕亚洲无线码一区| 女王羞辱丨vk| 国产午夜伦鲁鲁| 2021扫黑风暴在线观看免费完整版 | 国产精品免费视频能看| 无人区在线日本高清免费| 精品AV国产一区二区三区| 99久久国产极品蜜臀AV酒店| 受被攻做到腿发颤高h文| 黄色软件视频app| MD传媒在线观看佳片| 亚洲欧美高清在线精品一区| 欧美日韩精品一区二区三区四区| 国产香蕉视频| xx69中国| 一本道久在线综合色姐| 欧美末成年videos丨| 国产亚洲精品久久无码98| 999久久精品国产| 亚洲国产在线精品国偷产拍| 起碰免费公开97在线视频| 久久黄色大片| 国产精品手机在线视频| caoporn 在线视频| 岳打开双腿开始配合日韩视频| 吻嘴胸全身好爽床大全 | 精品少妇爆AV无码专区| silk118中文字幕无删减| 亚洲精品视频免费| 日本人作爰啪啪全过程| 久久黄色精品视频| 国产午夜精AV在线麻豆| youjizz怎么看| 88.7在线收听| 影音先锋亚洲AV少妇熟女| 无码欧美XXXXX在线观看裸| 欧美激情精品久久久久久不卡|