色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何使用Python+OpenCV為人臉生成口罩?

新機(jī)器視覺 ? 來源:新機(jī)器視覺 ? 作者:新機(jī)器視覺 ? 2021-01-07 13:55 ? 次閱讀

口罩已經(jīng)被證明是防止COVID-19傳播的最好的防御措施之一,然而,這也導(dǎo)致了基于面部特征(包括鼻子、嘴和下巴線)的面部識(shí)別算法的失效。 在全球有傳染病之前,面部識(shí)別系統(tǒng)通過對檢測到的不同面部特征進(jìn)行比較測量來驗(yàn)證兩幅圖像中的人臉。當(dāng)一個(gè)人的鼻子、嘴和臉頰上戴上口罩,大大減少了通常用來識(shí)別他/她的身份的信息。 將需要重新訓(xùn)練或重新設(shè)計(jì)有效的識(shí)別系統(tǒng),以識(shí)別受管制地區(qū)的口罩臉。為了做到這一點(diǎn),需要一個(gè)大的口罩?jǐn)?shù)據(jù)集來訓(xùn)練深度學(xué)習(xí)模型,以檢測戴口罩的人和不戴口罩的人。 目前,可用于訓(xùn)練和評估人臉識(shí)別系統(tǒng)的圖像數(shù)據(jù)集是有限的。據(jù)報(bào)道,美國國家標(biāo)準(zhǔn)與技術(shù)研究所(NIST)的研究通過將口罩(各種顏色、大小和位置)疊加在沒有帶口罩人臉的圖像上來解決這個(gè)問題。

這篇文章試圖用OpenCV和dlib庫來實(shí)現(xiàn)這個(gè)過程,在這里我們綜合生成5種類型的口罩來繪制人臉圖像。圖1顯示了生成的5種口罩類型。

安裝所需的軟件包

使用Python3.7創(chuàng)建一個(gè)新的虛擬環(huán)境并安裝依賴項(xiàng)。所需的庫如下:

#requirements_facemask.txt numpy == 1.18.5 pip == 20.2.2 imutils == 0.5.3 python 》=3.7 dlib == 19.21.0 cmake == 3.18.0 opencv-python == 4.4.0 由于此腳本需要dlib庫,因此在開始運(yùn)行該腳本之前需要安裝dlib,你可以通過以下鏈接了解如何使用Python綁定安裝dlib:https://www.pyimagesearch.com/2017/03/27/how-to-install-dlib/ Dlib是一個(gè)高級的機(jī)器學(xué)習(xí)庫,它是為解決復(fù)雜的現(xiàn)實(shí)世界問題而創(chuàng)建的。這個(gè)庫是用C++編程語言創(chuàng)建的,它可以使用C/C++、Python和java等語言。

導(dǎo)入庫

我們從導(dǎo)入所需的庫開始:OpenCV、dlib、numpy、os和imutils。

# 必要的導(dǎo)入 import cv2 import dlib import numpy as np import os import imutils 下一步是設(shè)置口罩的顏色,并設(shè)置要從中導(dǎo)入圖像的目錄和路徑,OpenCV的顏色空間按BGR順序而不是RGB。# 設(shè)置目錄 os.chdir(‘PATH_TO_DIR’) path = ‘IMAGE_PATH’ # 初始化顏色 [color_type] = (Blue, Green, Red) color_blue = (239,207,137) color_cyan = (255,200,0) color_black = (0, 0, 0) 下面的鏈接讓你可以立即從視覺上探索顏色,它可以用于將顏色從十六進(jìn)制轉(zhuǎn)換為RGB,反之亦然:https://www.rgbtohex.net/rgb/

圖像預(yù)處理

接下來,我們通過OpenCV加載我們的輸入圖像,然后通過調(diào)整大小使其具有500像素的寬度并將其轉(zhuǎn)換為灰度來預(yù)處理圖像。

# 加載圖像并調(diào)整大小,將其轉(zhuǎn)換為灰度 img= cv2.imread(‘image_path’) img = imutils.resize(img, width = 500) gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

使用dlib、OpenCV和Python檢測和提取人臉關(guān)鍵點(diǎn)

為了覆蓋口罩,我們需要進(jìn)行人臉檢測,有許多方法可用于執(zhí)行此任務(wù)我們可以使用OpenCV內(nèi)置的Haar Cascade XML文件,甚至TensorFlow或使用Keras。在這篇文章中,我們使用的是dlib的人臉檢測器。 dlib中的正面人臉檢測器是基于方向梯度直方圖(HOG)和線性SVM的。

我們使用dlib的正面人臉檢測來首先檢測人臉,然后使用面部標(biāo)志點(diǎn)預(yù)測器dlib.shape_predictor檢測人臉關(guān)鍵點(diǎn)。

人臉關(guān)鍵點(diǎn)檢測被定義為檢測臉上的關(guān)鍵標(biāo)志點(diǎn)并跟蹤它們(對由于頭部運(yùn)動(dòng)和面部表情而導(dǎo)致的剛性和非剛性面部變形具有魯棒性)[來源]

什么是人臉關(guān)鍵點(diǎn)?

人臉關(guān)鍵點(diǎn)是用于定位和表示面部的顯著區(qū)域,如眼睛、眉毛、鼻子、下顎線、嘴巴等,應(yīng)用于人臉對齊、頭部姿態(tài)估計(jì)、換臉、眨眼檢測、困倦檢測等領(lǐng)域。 在人臉關(guān)鍵點(diǎn)下,利用形狀預(yù)測方法對人臉上重要的面部結(jié)構(gòu)進(jìn)行檢測是非常必要的。面部標(biāo)志點(diǎn)檢測包括兩個(gè)步驟:

定位圖像中檢測到的人臉。

面部關(guān)鍵點(diǎn)的檢測

如前所述,我們可以通過多種方式執(zhí)行人臉檢測,但每種方法都試圖定位和標(biāo)記以下面部區(qū)域:

鼻子

下顎線

左眼和右眼

左右眉

在這篇文章中,我們使用了基于深度學(xué)習(xí)的人臉定位算法,該算法還用于圖像中人臉的檢測。我們將通過某種方法獲得面邊界框,其中我們分別使用圖像中人臉的(x,y)坐標(biāo)。一旦人臉區(qū)域被檢測到并被限定,我們進(jìn)入下一步檢測臉部區(qū)域中的關(guān)鍵點(diǎn)。 我們正在使用的dlib庫中包含的預(yù)訓(xùn)練人臉關(guān)鍵點(diǎn)探測器,這是Kazemi和Sullivan(2014)用回歸樹集合論文實(shí)現(xiàn)的1毫秒人臉對齊算法,其中估計(jì)了映射到人臉結(jié)構(gòu)的68個(gè)(x,y)坐標(biāo)的位置。我們可以使用下圖顯示68個(gè)坐標(biāo)或點(diǎn)的索引

53228ebe-503c-11eb-8b86-12bb97331649.jpg

從圖3可以通過不同的點(diǎn)集[起點(diǎn),終點(diǎn)]來評估面部特征的位置:

左眼:點(diǎn)[42,47]

嘴:點(diǎn)[48,67]

左眉:點(diǎn)[22,26]

鼻子:點(diǎn)[27,34]

右眉:點(diǎn)[17,21]

右眼:點(diǎn)[36,41]

下顎線:點(diǎn)[0,16]

請注意,標(biāo)志點(diǎn)從0開始 dlib人臉關(guān)鍵點(diǎn)檢測器就是在這個(gè)數(shù)據(jù)集上訓(xùn)練的:https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/

人臉檢測與人臉關(guān)鍵點(diǎn)檢測

下一步是對dlib的預(yù)訓(xùn)練人臉檢測器進(jìn)行初始化,該檢測器是基于Histogram of Oriented Gradients + Linear SVM method](https://pyimagesearch.com/2014/11/10/histogram-oriented-gradients-object-detection/) 。此檢測器會(huì)進(jìn)行圖像中人臉邊界框的檢測。 檢測器的第一個(gè)參數(shù)是我們的灰度圖像。(此方法也適用于彩色圖像)。 第二個(gè)參數(shù)是在應(yīng)用檢測器之前對圖像進(jìn)行放大時(shí)要應(yīng)用的圖像金字塔層的數(shù)量。在人臉檢測之前增加輸入圖像的分辨率的好處是可以讓我們在圖像中檢測到更多的人臉,但其缺點(diǎn)是,輸入圖像越大,計(jì)算開銷越大,檢測速度越慢。 我們還打印出邊界框的坐標(biāo)以及檢測到的人臉數(shù)。我們也可以使用cv2在檢測到的面部周圍使用for循環(huán)繪制邊界框。

# 初始化dlib的人臉檢測器 detector = dlib.get_frontal_face_detector() “”“ 在灰度圖像中檢測人臉并創(chuàng)建一個(gè)對象-存儲(chǔ)邊界矩形的坐標(biāo)列表 第二個(gè)參數(shù)中的“1”表示應(yīng)該向上采樣圖像1次。 這會(huì)使圖像變得更大,并允許我們檢測更多的面孔 ”“” faces = detector(gray, 1) # 打印邊界矩形的坐標(biāo) print(faces) print(“Number of faces detected: ”, len(faces)) “”“ # 使用for循環(huán)來提取特定坐標(biāo)(x1,x2,y1,y2) for face in faces: x1 = face.left() y1 = face.top() x2 = face.right() y2 = face.bottom() # 在檢測到的臉部周圍畫一個(gè)矩形 cv2.rectangle(img, (x1,y1), (x2,y2),(0,255,0),3) cv2.imshow(”image“, img) cv2.waitKey(0) cv2.destroyAllWindows() ”“” 為了檢測人臉關(guān)鍵點(diǎn),我們需要從dlib庫下載人臉關(guān)鍵點(diǎn)預(yù)測器dlib.shape_predictor。 我們的預(yù)測方法需要一個(gè)名為“shape_predictor_68_face_landmarks.dat”的文件,可從以下鏈接

需要強(qiáng)調(diào)的是,這個(gè)模型文件是專為dlib的HOG人臉檢測器設(shè)計(jì)的,不應(yīng)該用于dlib的基于CNN的人臉檢測器,原因是它期望人臉檢測器的邊界框按照dlib的HOG人臉檢測器的方式對齊。 當(dāng)與另一個(gè)產(chǎn)生不同對齊框的人臉檢測器(如基于CNN的mmod_human_face_detector.dat )一起使用時(shí),結(jié)果不會(huì)很好。# 文件路徑 p = “shape_predictor_68_face_landmarks.dat” # 初始化dlib的預(yù)測器 predictor = dlib.shape_predictor(p) # 使用預(yù)測器獲取外形 for face in faces: landmarks = predictor(gray, face) # for n in range(0,68): # x = landmarks.part(n).x # y = landmarks.part(n).y # img_landmark = cv2.circle(img, (x, y), 4, (0, 0, 255), -1) 下載檢測器后,我們可以初始化檢測器,以便在輸入圖像中檢測到的每個(gè)人臉上檢測到人臉關(guān)鍵點(diǎn)。 一旦檢測到人臉關(guān)鍵點(diǎn),我們就可以開始“繪圖”了,通過使用OpenCV中的繪圖功能連接所需的點(diǎn),將口罩覆蓋在臉上:https://docs.opencv.org/master/dc/da5/tutorial_py_drawing_functions.html

Dlib口罩方法

下面的步驟包括識(shí)別繪制不同類型口罩所需的點(diǎn)。我們復(fù)制的口罩類型由NIST研究報(bào)告附錄A中提到的不同點(diǎn)集定義:https://doi.org/10.6028/NIST.IR.8311。視覺效果見圖。

53445e7c-503c-11eb-8b86-12bb97331649.png

我們將通過連接附錄A中定義的標(biāo)志點(diǎn)來定義口罩的形狀。例如,為了形成寬覆蓋和中覆蓋口罩,我們將用29點(diǎn)的標(biāo)志點(diǎn)坐標(biāo)連接(繪制)下顎線[0,16]的標(biāo)志點(diǎn)。 可以使用OpenCV中橢圓和其他三種規(guī)則形狀函數(shù)繪制口罩輪廓。然后我們可以使用cv2.fillpoly函數(shù)將繪制的口罩填充顏色。

points = [] for i in range(1, 16): point = [landmarks.part(i).x, landmarks.part(i).y] points.append(point) # print(points) # 寬,高覆蓋口罩 mask_a = [((landmarks.part(42).x), (landmarks.part(15).y)), ((landmarks.part(27).x), (landmarks.part(27).y)), ((landmarks.part(39).x), (landmarks.part(1).y))] # 寬,中覆蓋口罩 mask_c = [((landmarks.part(29).x), (landmarks.part(29).y))] # 寬、低覆蓋口罩 mask_e = [((landmarks.part(35).x), (landmarks.part(35).y)), ((landmarks.part(34).x), (landmarks.part(34).y)), ((landmarks.part(33).x), (landmarks.part(33).y)), ((landmarks.part(32).x), (landmarks.part(32).y)), ((landmarks.part(31).x), (landmarks.part(31).y))] fmask_a = points + mask_a fmask_c = points + mask_c fmask_e = points + mask_e # mask_type = {1: fmask_a, 2: fmask_c, 3: fmask_e} # mask_type[choice2] # 使用Python OpenCV - cv2.polylines()方法為[mask_type]繪制口罩輪廓: # fmask_a = wide, high coverage mask, # fmask_c = wide, medium coverage mask, # fmask_e = wide, low coverage mask fmask_a = np.array(fmask_a, dtype=np.int32) fmask_c = np.array(fmask_c, dtype=np.int32) fmask_e = np.array(fmask_e, dtype=np.int32) mask_type = {1: fmask_a, 2: fmask_c, 3: fmask_e} mask_type[choice2] # 更改參數(shù)[mask_type]和color_type用于各種組合 img2 = cv2.polylines(img, [mask_type[choice2]], True, choice1, thickness=2, lineType=cv2.LINE_8) # 使用Python OpenCV - cv2.fillPoly()

方法填充口罩 # 更改參數(shù)[mask_type]和color_type用于各種組合 img3 = cv2.fillPoly(img2, [mask_type[choice2]], choice1, lineType=cv2.LINE_AA) # cv2.imshow(“image with mask outline”, img2) cv2.imshow(“image with mask”, img3) # 為測試保存輸出文件 outputNameofImage = “output/imagetest.jpg” print(“Saving output image to”, outputNameofImage) cv2.imwrite(outputNameofImage, img3) points = [] for i in range(1, 16): point = [landmarks.part(i).x, landmarks.part(i).y] points.append(point) # print(points) # 橢圓參數(shù)為高,圓形是覆蓋口罩 top_ellipse = landmarks.part(27).y + (landmarks.part(28).y - landmarks.part(27).y) / 2 centre_x = landmarks.part(28).x centre_y = landmarks.part(8).y - ((landmarks.part(8).y - (top_ellipse)) / 2) # 橢圓高度 axis_major = (landmarks.part(8).y - top_ellipse) / 2 # 橢圓寬度 axis_minor = ((landmarks.part(13).x - landmarks.part(3).x) * 0.8) / 2 centre_x = int(round(centre_x)) centre_y = int(round(centre_y)) axis_major = int(round(axis_major)) axis_minor = int(round(axis_minor)) centre = (centre_x, centre_y) axes = (axis_major, axis_minor) # 使用Python OpenCV - cv2.ellipse()

方法繪制口罩輪廓 # 更改最后一個(gè)參數(shù)- line thickness和color_type為各種組合 img_2 = cv2.ellipse(img, centre, axes, 0, 0, 360, color_type, thickness=2) # 使用Python OpenCV - cv2.ellipse()方法繪制口罩輪廓 # 更改最后一個(gè)參數(shù)-line thickness為負(fù)數(shù)用于填充,color_type用于各種組合 img_3 = cv2.ellipse(img, centre, axes, 0, 0, 360, color_type, thickness=-1) # cv2.imshow(“image with mask outline”, img_2) cv2.imshow(“image with mask”, img_3) 在圖像檢測開始之前,用戶可以選擇預(yù)先確定口罩的顏色和類型。我們預(yù)先選擇了兩種顏色的口罩-藍(lán)色和黑色# 使用input()函數(shù)根據(jù)用戶需求獲取口罩類型和口罩顏色 choice1 = input(“Please select the choice of mask color Enter 1 for blue Enter 2 for black: ”) choice1 = int(choice1) if choice1 == 1: choice1 = color_blue print(‘You selected mask color = blue’) elif choice1 == 2: choice1 = color_black print(‘You selected mask color = black’) else: print(“invalid selection, please select again.”) input(“Please select the choice of mask color Enter 1 for blue Enter 2 for black : ”) choice2 = input(“Please enter choice of mask type coverage Enter 1 for high Enter 2 for medium Enter 3 for low : ”) choice2 = int(choice2) if choice2 == 1: # choice2 = fmask_a print(f‘You chosen wide, high coverage mask’) elif choice2 == 2: # choice2 = fmask_c print(f‘You chosen wide, medium coverage mask’) elif choice2 == 3: # choice2 = fmask_e print(f‘You chosen wide, low coverage mask’) else: print(“invalid selection, please select again.”) input(“Please enter choice of mask type coverage Enter 1 for high Enter 2 for medium Enter 3 for low : ”) # print(choice2)

結(jié)果

圖5顯示了原始輸入圖像(Barack Obama的圖像)與使用腳本生成了口罩的輸出圖像之間的比較。我們也可以在人群鏡頭使用這個(gè)腳本。如圖6所示,在著名的Ellen‘s wefie拍攝中,在檢測到的人臉上疊加口罩的結(jié)果。 我們能夠成功地復(fù)制生成5種不同類型的口罩的過程(詳見附錄A),這些口罩可以使用dlib和OpenCV疊加在未帶口罩的人臉的圖像上。 圖7到圖9顯示了在不直接看相機(jī)的臉上的更多示例。

結(jié)論

該腳本能夠在檢測到的人臉上生成合成口罩臉,輸出圖像可用于測試或驗(yàn)證其他面向應(yīng)用的ML網(wǎng)絡(luò),如室內(nèi)考勤系統(tǒng)的人臉識(shí)別、口罩檢測等。

原文標(biāo)題:使用Python+OpenCV+dlib為人臉生成口罩

文章出處:【微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • OpenCV
    +關(guān)注

    關(guān)注

    31

    文章

    635

    瀏覽量

    41464
  • python
    +關(guān)注

    關(guān)注

    56

    文章

    4807

    瀏覽量

    84957

原文標(biāo)題:使用Python+OpenCV+dlib為人臉生成口罩

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    使用Python+OpenCV處理圖片

    如果給你一張圖片作為背景,另外一張圖片中的物體作為前景圖,要把前景圖中的物體疊加布置到背景圖的中間位置,并且前景圖中的物體需要在背景圖中有旋轉(zhuǎn)和投影,怎么處理?
    的頭像 發(fā)表于 12-23 15:54 ?260次閱讀

    【AI實(shí)戰(zhàn)項(xiàng)目】基于OpenCV的“顏色識(shí)別項(xiàng)目”完整操作過程

    適用于哪些場景,然后通過Python編寫代碼來實(shí)現(xiàn)這些算法,并應(yīng)用于實(shí)際項(xiàng)目中,實(shí)現(xiàn)圖像的檢測、識(shí)別、分類、定位、測量等目標(biāo)。華清遠(yuǎn)見【python+OpenCV
    的頭像 發(fā)表于 12-09 16:42 ?472次閱讀
    【AI實(shí)戰(zhàn)項(xiàng)目】基于<b class='flag-5'>OpenCV</b>的“顏色識(shí)別項(xiàng)目”完整操作過程

    RK3568 + OpenCV 會(huì)碰撞出什么火花?案例詳解:2-1 基于OpenCV的畫線實(shí)驗(yàn)

    一系列 C 函數(shù)和少量 C++ 類構(gòu)成,同時(shí)提供了Python、Ruby、MATLAB等語言的接口,實(shí)現(xiàn)了圖像處理和計(jì)算機(jī)視覺方面的很多通用算法。 OpenCV具有以下特點(diǎn): 不管是科學(xué)研究,還是商業(yè)
    發(fā)表于 12-03 14:09

    一個(gè)月速成python+OpenCV圖像處理

    OpenCV是一個(gè)廣受歡迎且極為流行的計(jì)算機(jī)視覺庫,它因其強(qiáng)大的功能、靈活性和開源特性而在開發(fā)者和研究者中備受青睞。學(xué)習(xí)OpenCV主要就是學(xué)習(xí)里面的計(jì)算機(jī)視覺算法。要學(xué)習(xí)這些算法的原理,知道它們
    的頭像 發(fā)表于 11-29 18:27 ?187次閱讀
    一個(gè)月速成<b class='flag-5'>python+OpenCV</b>圖像處理

    《DNK210使用指南 -CanMV版 V1.0》第四十二章 人臉口罩佩戴檢測實(shí)驗(yàn)

    第四十二章 人臉口罩佩戴檢測實(shí)驗(yàn) 在上一章節(jié)中,介紹了利用maix.KPU模塊實(shí)現(xiàn)YOLO2的物體檢測,本章將繼續(xù)介紹利用maix.KPU模塊實(shí)現(xiàn)的人臉口罩佩戴檢測。通過本章的學(xué)習(xí),讀
    發(fā)表于 11-18 09:28

    如何用OpenCV的相機(jī)捕捉視頻進(jìn)行人臉檢測--基于米爾NXP i.MX93開發(fā)板

    : breakvideo.release()cv2.destroyAllWindows() 保存后執(zhí)行”python3 opencv_test.py OpenCV裝好后,可以為后面的人臉
    發(fā)表于 11-15 17:58

    基于OPENCV的相機(jī)捕捉視頻進(jìn)行人臉檢測--米爾NXP i.MX93開發(fā)板

    本文將介紹基于米爾電子MYD-LMX93開發(fā)板(米爾基于NXPi.MX93開發(fā)板)的基于OpenCV人臉檢測方案測試。OpenCV提供了一個(gè)非常簡單的接口,用于相機(jī)捕捉一個(gè)視頻(我用的電腦內(nèi)置
    的頭像 發(fā)表于 11-07 09:03 ?1146次閱讀
    基于<b class='flag-5'>OPENCV</b>的相機(jī)捕捉視頻進(jìn)行<b class='flag-5'>人臉</b>檢測--米爾NXP i.MX93開發(fā)板

    opencv-pythonopencv一樣嗎

    不一樣。OpenCV(Open Source Computer Vision Library)是一個(gè)開源的計(jì)算機(jī)視覺和機(jī)器學(xué)習(xí)軟件庫,它提供了大量的圖像和視頻處理功能。OpenCV-Python
    的頭像 發(fā)表于 07-16 10:38 ?1354次閱讀

    基于Python的深度學(xué)習(xí)人臉識(shí)別方法

    基于Python的深度學(xué)習(xí)人臉識(shí)別方法是一個(gè)涉及多個(gè)技術(shù)領(lǐng)域的復(fù)雜話題,包括計(jì)算機(jī)視覺、深度學(xué)習(xí)、以及圖像處理等。在這里,我將概述一個(gè)基本的流程,包括數(shù)據(jù)準(zhǔn)備、模型選擇、訓(xùn)練過程、以及測試與評估,并附上簡單的代碼示例。
    的頭像 發(fā)表于 07-14 11:52 ?1310次閱讀

    基于OpenCV人臉識(shí)別系統(tǒng)設(shè)計(jì)

    基于OpenCV人臉識(shí)別系統(tǒng)是一個(gè)復(fù)雜但功能強(qiáng)大的系統(tǒng),廣泛應(yīng)用于安全監(jiān)控、人機(jī)交互、智能家居等多個(gè)領(lǐng)域。下面將詳細(xì)介紹基于OpenCV人臉識(shí)別系統(tǒng)的基本原理、實(shí)現(xiàn)步驟,并附上具體
    的頭像 發(fā)表于 07-11 15:37 ?1.4w次閱讀

    人臉檢測模型的精確度怎么算

    檢測是計(jì)算機(jī)視覺領(lǐng)域的一個(gè)重要研究方向,其目的是在圖像或視頻中快速準(zhǔn)確地定位人臉的位置。人臉檢測模型通常包括兩個(gè)主要步驟:人臉候選區(qū)域的生成人臉
    的頭像 發(fā)表于 07-04 09:14 ?608次閱讀

    口罩佩戴檢測算法

    口罩佩戴檢測算法基于YOLOv5在圖像識(shí)別檢測領(lǐng)域的優(yōu)異性能,本文研究基于基于YOLOv5的口罩佩自動(dòng)戴檢測方法。首先從網(wǎng)絡(luò)和真實(shí)生活中中尋找并采集不同場景人群口罩佩戴的圖片約500張并自建數(shù)據(jù)集
    的頭像 發(fā)表于 07-01 20:20 ?353次閱讀
    <b class='flag-5'>口罩</b>佩戴檢測算法

    STM32MP135如何使用opencv-python或v4l2-ctl打開攝像頭,并保存為圖片?

    行。 但是官方的例程中,直接用v4l推送到media上,直接顯示的又是可以的。 請問我該如何使用opencv-python 或v4l2-ctl打開攝像頭,并保存為圖片?
    發(fā)表于 05-30 06:16

    如何使用Python生成四位隨機(jī)數(shù)字

    為了實(shí)現(xiàn)這些目標(biāo),Python 為我們提供了random() 模塊。random() 是一個(gè)內(nèi)置的 Python 模塊,用于生成隨機(jī)數(shù)。
    的頭像 發(fā)表于 04-15 12:47 ?737次閱讀

    itop-RK3588開發(fā)板機(jī)器視覺開發(fā)OpenCV-Python的安裝

    itop-RK3588開發(fā)板機(jī)器視覺開發(fā)OpenCV-Python的安裝
    的頭像 發(fā)表于 01-26 15:18 ?4272次閱讀
    itop-RK3588開發(fā)板機(jī)器視覺開發(fā)<b class='flag-5'>OpenCV-Python</b>的安裝
    主站蜘蛛池模板: 国产亚洲精品精华液 | 欧美日韩精品一区二区三区高清视频 | av天堂网2017avtt| 久久精品综合网中文字幕 | 国产成人高清精品免费观看 | 久久99热狠狠色一区二区 | 99国产在线视频有精品视频 | 女人张腿让男人桶免费 | 久久精品免费观看久久 | 神马电影dy888午夜我不卡 | 中文字幕一区二区视频 | 男人的天堂久久精品激情a 男人的天堂黄色片 | 99热成人精品国产免男男 | 帝王被大臣们调教高肉 | 99久久香蕉国产线看观看 | 久久不射视频 | 精品国产品在线18年 | 国产av在在免费线观看美女 | 小泽玛丽av无码观看 | 交换年轻夫妇HD中文字幕 | 久草色在线 | 亚洲精品久久午夜麻豆 | 快播看av| 亚洲三级在线观看 | sihu国产精品永久免费 | 国产色婷婷精品人妻蜜桃成熟 | 黑人巨茎vide抽搐 | 国产成人午夜精品免费视频 | 国产午夜视频在线 | 国内精品国内自产视频 | 折磨比基尼美女挠肚子 | 最新国产麻豆精品 | 亚洲国产成人爱AV在线播放丿 | 把极品白丝老师啪到腿软 | 国内九一激情白浆发布 | 99热在线观看精品 | 日韩伦理电影秋霞影院 | 日本午夜精品一区二区三区电影 | 2022一本久道久久综合狂躁 | 9久高清在线不卡免费无吗视频 | 蜜桃视频无码区在线观看 |